Trova x
x=-3
x=8
Grafico
Condividi
Copiato negli Appunti
-x^{2}+5x+24=0
Ridisponi il polinomio per convertirlo nel formato standard. Disponi i termini in ordine dalla potenza massima a quella minima.
a+b=5 ab=-24=-24
Per risolvere l'equazione, fattorizzare il lato sinistro raggruppandolo. Per prima cosa, è necessario riscrivere il lato sinistro come -x^{2}+ax+bx+24. Per trovare a e b, configurare un sistema da risolvere.
-1,24 -2,12 -3,8 -4,6
Poiché ab è negativo, a e b hanno i segni opposti. Poiché a+b è positivo, il numero positivo ha un valore assoluto maggiore di quello negativo. Elenca tutte le coppie di numeri interi di questo tipo che danno come prodotto -24.
-1+24=23 -2+12=10 -3+8=5 -4+6=2
Calcola la somma di ogni coppia.
a=8 b=-3
La soluzione è la coppia che restituisce 5 come somma.
\left(-x^{2}+8x\right)+\left(-3x+24\right)
Riscrivi -x^{2}+5x+24 come \left(-x^{2}+8x\right)+\left(-3x+24\right).
-x\left(x-8\right)-3\left(x-8\right)
Fattori in -x nel primo e -3 nel secondo gruppo.
\left(x-8\right)\left(-x-3\right)
Fattorizza il termine comune x-8 tramite la proprietà distributiva.
x=8 x=-3
Per trovare soluzioni di equazione, risolvere x-8=0 e -x-3=0.
-x^{2}+5x+24=0
Tutte le equazioni nel formato ax^{2}+bx+c=0 possono essere risolti usando la formula risolutiva per equazioni di secondo grado: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La formula risolutiva per equazioni di secondo grado fornisce due soluzioni, una quando ± è un'addizione e l'altra quando è una sottrazione.
x=\frac{-5±\sqrt{5^{2}-4\left(-1\right)\times 24}}{2\left(-1\right)}
Questa equazione è nel formato standard: ax^{2}+bx+c=0. Sostituisci -1 a a, 5 a b e 24 a c nella formula risolutiva per equazioni di secondo grado \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\left(-1\right)\times 24}}{2\left(-1\right)}
Eleva 5 al quadrato.
x=\frac{-5±\sqrt{25+4\times 24}}{2\left(-1\right)}
Moltiplica -4 per -1.
x=\frac{-5±\sqrt{25+96}}{2\left(-1\right)}
Moltiplica 4 per 24.
x=\frac{-5±\sqrt{121}}{2\left(-1\right)}
Aggiungi 25 a 96.
x=\frac{-5±11}{2\left(-1\right)}
Calcola la radice quadrata di 121.
x=\frac{-5±11}{-2}
Moltiplica 2 per -1.
x=\frac{6}{-2}
Ora risolvi l'equazione x=\frac{-5±11}{-2} quando ± è più. Aggiungi -5 a 11.
x=-3
Dividi 6 per -2.
x=-\frac{16}{-2}
Ora risolvi l'equazione x=\frac{-5±11}{-2} quando ± è meno. Sottrai 11 da -5.
x=8
Dividi -16 per -2.
x=-3 x=8
L'equazione è stata risolta.
-x^{2}+5x+24=0
Le equazioni di secondo grado come questa possono essere risolte completando il quadrato. Per completare il quadrato, l'equazione deve essere prima convertita nel formato x^{2}+bx=c.
-x^{2}+5x+24-24=-24
Sottrai 24 da entrambi i lati dell'equazione.
-x^{2}+5x=-24
Sottraendo 24 da se stesso rimane 0.
\frac{-x^{2}+5x}{-1}=-\frac{24}{-1}
Dividi entrambi i lati per -1.
x^{2}+\frac{5}{-1}x=-\frac{24}{-1}
La divisione per -1 annulla la moltiplicazione per -1.
x^{2}-5x=-\frac{24}{-1}
Dividi 5 per -1.
x^{2}-5x=24
Dividi -24 per -1.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=24+\left(-\frac{5}{2}\right)^{2}
Dividi -5, il coefficiente del termine x, per 2 per ottenere -\frac{5}{2}. Quindi aggiungi il quadrato di -\frac{5}{2} a entrambi i lati dell'equazione. Con questo passaggio, il lato sinistro dell'equazione diventa un quadrato perfetto.
x^{2}-5x+\frac{25}{4}=24+\frac{25}{4}
Eleva -\frac{5}{2} al quadrato elevando al quadrato sia il numeratore che il denominatore della frazione.
x^{2}-5x+\frac{25}{4}=\frac{121}{4}
Aggiungi 24 a \frac{25}{4}.
\left(x-\frac{5}{2}\right)^{2}=\frac{121}{4}
Fattore x^{2}-5x+\frac{25}{4}. In generale, quando x^{2}+bx+c è un quadrato perfetto, può sempre essere scomplicato come \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{121}{4}}
Calcola la radice quadrata di entrambi i lati dell'equazione.
x-\frac{5}{2}=\frac{11}{2} x-\frac{5}{2}=-\frac{11}{2}
Semplifica.
x=8 x=-3
Aggiungi \frac{5}{2} a entrambi i lati dell'equazione.
Esempi
Equazione quadratica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equazione lineare
y = 3x + 4
Aritmetica
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equazione simultanea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenziazione
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazione
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}