Trova x
x=-\frac{2y}{21\left(1-y\right)}
y\neq 1
Trova y
y=-\frac{21x}{2-21x}
x\neq \frac{2}{21}
Grafico
Condividi
Copiato negli Appunti
21x+2y-21xy=0
Sottrai 21xy da entrambi i lati.
21x-21xy=-2y
Sottrai 2y da entrambi i lati. Qualsiasi valore sottratto da zero restituisce il proprio negativo.
\left(21-21y\right)x=-2y
Combina tutti i termini contenenti x.
\frac{\left(21-21y\right)x}{21-21y}=-\frac{2y}{21-21y}
Dividi entrambi i lati per -21y+21.
x=-\frac{2y}{21-21y}
La divisione per -21y+21 annulla la moltiplicazione per -21y+21.
x=-\frac{2y}{21\left(1-y\right)}
Dividi -2y per -21y+21.
21x+2y-21xy=0
Sottrai 21xy da entrambi i lati.
2y-21xy=-21x
Sottrai 21x da entrambi i lati. Qualsiasi valore sottratto da zero restituisce il proprio negativo.
\left(2-21x\right)y=-21x
Combina tutti i termini contenenti y.
\frac{\left(2-21x\right)y}{2-21x}=-\frac{21x}{2-21x}
Dividi entrambi i lati per 2-21x.
y=-\frac{21x}{2-21x}
La divisione per 2-21x annulla la moltiplicazione per 2-21x.
Esempi
Equazione quadratica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equazione lineare
y = 3x + 4
Aritmetica
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equazione simultanea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenziazione
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazione
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}