2(4-x)-2x(4-x) \div (4- { x }^{ 2 }
Calcola
\frac{2\left(x-4\right)\left(x^{2}+x-4\right)}{4-x^{2}}
Espandi
\frac{2\left(x^{3}-3x^{2}-8x+16\right)}{4-x^{2}}
Grafico
Condividi
Copiato negli Appunti
8-2x-\frac{2x\left(4-x\right)}{4-x^{2}}
Usa la proprietà distributiva per moltiplicare 2 per 4-x.
8-2x-\frac{8x-2x^{2}}{4-x^{2}}
Usa la proprietà distributiva per moltiplicare 2x per 4-x.
8-2x-\frac{8x-2x^{2}}{\left(x-2\right)\left(-x-2\right)}
Fattorizzare 4-x^{2}.
\frac{\left(8-2x\right)\left(x-2\right)\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)}-\frac{8x-2x^{2}}{\left(x-2\right)\left(-x-2\right)}
Per aggiungere o sottrarre espressioni, espandile per rendere uguali i denominatori. Moltiplica 8-2x per \frac{\left(x-2\right)\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)}.
\frac{\left(8-2x\right)\left(x-2\right)\left(-x-2\right)-\left(8x-2x^{2}\right)}{\left(x-2\right)\left(-x-2\right)}
Poiché \frac{\left(8-2x\right)\left(x-2\right)\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)} e \frac{8x-2x^{2}}{\left(x-2\right)\left(-x-2\right)} hanno lo stesso denominatore, calcolane la sottrazione sottraendo i numeratori.
\frac{-8x^{2}+32+2x^{3}-8x-8x+2x^{2}}{\left(x-2\right)\left(-x-2\right)}
Esegui le moltiplicazioni in \left(8-2x\right)\left(x-2\right)\left(-x-2\right)-\left(8x-2x^{2}\right).
\frac{-6x^{2}+32+2x^{3}-16x}{\left(x-2\right)\left(-x-2\right)}
Unisci i termini come in -8x^{2}+32+2x^{3}-8x-8x+2x^{2}.
\frac{-6x^{2}+32+2x^{3}-16x}{-x^{2}+4}
Espandi \left(x-2\right)\left(-x-2\right).
8-2x-\frac{2x\left(4-x\right)}{4-x^{2}}
Usa la proprietà distributiva per moltiplicare 2 per 4-x.
8-2x-\frac{8x-2x^{2}}{4-x^{2}}
Usa la proprietà distributiva per moltiplicare 2x per 4-x.
8-2x-\frac{8x-2x^{2}}{\left(x-2\right)\left(-x-2\right)}
Fattorizzare 4-x^{2}.
\frac{\left(8-2x\right)\left(x-2\right)\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)}-\frac{8x-2x^{2}}{\left(x-2\right)\left(-x-2\right)}
Per aggiungere o sottrarre espressioni, espandile per rendere uguali i denominatori. Moltiplica 8-2x per \frac{\left(x-2\right)\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)}.
\frac{\left(8-2x\right)\left(x-2\right)\left(-x-2\right)-\left(8x-2x^{2}\right)}{\left(x-2\right)\left(-x-2\right)}
Poiché \frac{\left(8-2x\right)\left(x-2\right)\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)} e \frac{8x-2x^{2}}{\left(x-2\right)\left(-x-2\right)} hanno lo stesso denominatore, calcolane la sottrazione sottraendo i numeratori.
\frac{-8x^{2}+32+2x^{3}-8x-8x+2x^{2}}{\left(x-2\right)\left(-x-2\right)}
Esegui le moltiplicazioni in \left(8-2x\right)\left(x-2\right)\left(-x-2\right)-\left(8x-2x^{2}\right).
\frac{-6x^{2}+32+2x^{3}-16x}{\left(x-2\right)\left(-x-2\right)}
Unisci i termini come in -8x^{2}+32+2x^{3}-8x-8x+2x^{2}.
\frac{-6x^{2}+32+2x^{3}-16x}{-x^{2}+4}
Espandi \left(x-2\right)\left(-x-2\right).
Esempi
Equazione quadratica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equazione lineare
y = 3x + 4
Aritmetica
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equazione simultanea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenziazione
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazione
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}