Salta al contenuto principale
Trova x
Tick mark Image
Grafico

Problemi simili da ricerca Web

Condividi

2x^{2}-x=123
Sottrai x da entrambi i lati.
2x^{2}-x-123=0
Sottrai 123 da entrambi i lati.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 2\left(-123\right)}}{2\times 2}
Questa equazione è nel formato standard: ax^{2}+bx+c=0. Sostituisci 2 a a, -1 a b e -123 a c nella formula risolutiva per equazioni di secondo grado \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-8\left(-123\right)}}{2\times 2}
Moltiplica -4 per 2.
x=\frac{-\left(-1\right)±\sqrt{1+984}}{2\times 2}
Moltiplica -8 per -123.
x=\frac{-\left(-1\right)±\sqrt{985}}{2\times 2}
Aggiungi 1 a 984.
x=\frac{1±\sqrt{985}}{2\times 2}
L'opposto di -1 è 1.
x=\frac{1±\sqrt{985}}{4}
Moltiplica 2 per 2.
x=\frac{\sqrt{985}+1}{4}
Ora risolvi l'equazione x=\frac{1±\sqrt{985}}{4} quando ± è più. Aggiungi 1 a \sqrt{985}.
x=\frac{1-\sqrt{985}}{4}
Ora risolvi l'equazione x=\frac{1±\sqrt{985}}{4} quando ± è meno. Sottrai \sqrt{985} da 1.
x=\frac{\sqrt{985}+1}{4} x=\frac{1-\sqrt{985}}{4}
L'equazione è stata risolta.
2x^{2}-x=123
Sottrai x da entrambi i lati.
\frac{2x^{2}-x}{2}=\frac{123}{2}
Dividi entrambi i lati per 2.
x^{2}-\frac{1}{2}x=\frac{123}{2}
La divisione per 2 annulla la moltiplicazione per 2.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=\frac{123}{2}+\left(-\frac{1}{4}\right)^{2}
Dividi -\frac{1}{2}, il coefficiente del termine x, per 2 per ottenere -\frac{1}{4}. Quindi aggiungi il quadrato di -\frac{1}{4} a entrambi i lati dell'equazione. Con questo passaggio, il lato sinistro dell'equazione diventa un quadrato perfetto.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{123}{2}+\frac{1}{16}
Eleva -\frac{1}{4} al quadrato elevando al quadrato sia il numeratore che il denominatore della frazione.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{985}{16}
Aggiungi \frac{123}{2} a \frac{1}{16} trovando un denominatore comune e sommando i numeratori, quindi riduci la frazione ai minimi termini, se possibile.
\left(x-\frac{1}{4}\right)^{2}=\frac{985}{16}
Fattore x^{2}-\frac{1}{2}x+\frac{1}{16}. In generale, quando x^{2}+bx+c è un quadrato perfetto, può sempre essere scomplicato come \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{985}{16}}
Calcola la radice quadrata di entrambi i lati dell'equazione.
x-\frac{1}{4}=\frac{\sqrt{985}}{4} x-\frac{1}{4}=-\frac{\sqrt{985}}{4}
Semplifica.
x=\frac{\sqrt{985}+1}{4} x=\frac{1-\sqrt{985}}{4}
Aggiungi \frac{1}{4} a entrambi i lati dell'equazione.