Salta al contenuto principale
Scomponi in fattori
Tick mark Image
Calcola
Tick mark Image
Grafico

Problemi simili da ricerca Web

Condividi

5\left(3x-5x^{2}\right)
Scomponi 5 in fattori.
x\left(3-5x\right)
Considera 3x-5x^{2}. Scomponi x in fattori.
5x\left(-5x+3\right)
Riscrivi l'espressione fattorizzata completa.
-25x^{2}+15x=0
Il polinomio quadratico può essere scomposto in fattori utilizzando la trasformazione ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), dove x_{1} e x_{2} sono le soluzioni dell'equazione quadratica ax^{2}+bx+c=0.
x=\frac{-15±\sqrt{15^{2}}}{2\left(-25\right)}
Tutte le equazioni nel formato ax^{2}+bx+c=0 possono essere risolti usando la formula risolutiva per equazioni di secondo grado: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La formula risolutiva per equazioni di secondo grado fornisce due soluzioni, una quando ± è un'addizione e l'altra quando è una sottrazione.
x=\frac{-15±15}{2\left(-25\right)}
Calcola la radice quadrata di 15^{2}.
x=\frac{-15±15}{-50}
Moltiplica 2 per -25.
x=\frac{0}{-50}
Ora risolvi l'equazione x=\frac{-15±15}{-50} quando ± è più. Aggiungi -15 a 15.
x=0
Dividi 0 per -50.
x=-\frac{30}{-50}
Ora risolvi l'equazione x=\frac{-15±15}{-50} quando ± è meno. Sottrai 15 da -15.
x=\frac{3}{5}
Riduci la frazione \frac{-30}{-50} ai minimi termini estraendo e annullando 10.
-25x^{2}+15x=-25x\left(x-\frac{3}{5}\right)
Scomponi in fattori l'espressione originale usando ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Sostituisci x_{1} con 0 e x_{2} con \frac{3}{5}.
-25x^{2}+15x=-25x\times \frac{-5x+3}{-5}
Sottrai \frac{3}{5} da x trovando un denominatore comune e sottraendo i numeratori, quindi riduci la frazione ai minimi termini, se possibile.
-25x^{2}+15x=5x\left(-5x+3\right)
Annulla il massimo comune divisore 5 in -25 e -5.