Trova x (soluzione complessa)
x=\frac{1+\sqrt{119}i}{20}\approx 0,05+0,545435606i
x=\frac{-\sqrt{119}i+1}{20}\approx 0,05-0,545435606i
Grafico
Condividi
Copiato negli Appunti
10x^{2}-x+3=0
Tutte le equazioni nel formato ax^{2}+bx+c=0 possono essere risolti usando la formula risolutiva per equazioni di secondo grado: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La formula risolutiva per equazioni di secondo grado fornisce due soluzioni, una quando ± è un'addizione e l'altra quando è una sottrazione.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 10\times 3}}{2\times 10}
Questa equazione è nel formato standard: ax^{2}+bx+c=0. Sostituisci 10 a a, -1 a b e 3 a c nella formula risolutiva per equazioni di secondo grado \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-40\times 3}}{2\times 10}
Moltiplica -4 per 10.
x=\frac{-\left(-1\right)±\sqrt{1-120}}{2\times 10}
Moltiplica -40 per 3.
x=\frac{-\left(-1\right)±\sqrt{-119}}{2\times 10}
Aggiungi 1 a -120.
x=\frac{-\left(-1\right)±\sqrt{119}i}{2\times 10}
Calcola la radice quadrata di -119.
x=\frac{1±\sqrt{119}i}{2\times 10}
L'opposto di -1 è 1.
x=\frac{1±\sqrt{119}i}{20}
Moltiplica 2 per 10.
x=\frac{1+\sqrt{119}i}{20}
Ora risolvi l'equazione x=\frac{1±\sqrt{119}i}{20} quando ± è più. Aggiungi 1 a i\sqrt{119}.
x=\frac{-\sqrt{119}i+1}{20}
Ora risolvi l'equazione x=\frac{1±\sqrt{119}i}{20} quando ± è meno. Sottrai i\sqrt{119} da 1.
x=\frac{1+\sqrt{119}i}{20} x=\frac{-\sqrt{119}i+1}{20}
L'equazione è stata risolta.
10x^{2}-x+3=0
Le equazioni di secondo grado come questa possono essere risolte completando il quadrato. Per completare il quadrato, l'equazione deve essere prima convertita nel formato x^{2}+bx=c.
10x^{2}-x+3-3=-3
Sottrai 3 da entrambi i lati dell'equazione.
10x^{2}-x=-3
Sottraendo 3 da se stesso rimane 0.
\frac{10x^{2}-x}{10}=-\frac{3}{10}
Dividi entrambi i lati per 10.
x^{2}-\frac{1}{10}x=-\frac{3}{10}
La divisione per 10 annulla la moltiplicazione per 10.
x^{2}-\frac{1}{10}x+\left(-\frac{1}{20}\right)^{2}=-\frac{3}{10}+\left(-\frac{1}{20}\right)^{2}
Dividi -\frac{1}{10}, il coefficiente del termine x, per 2 per ottenere -\frac{1}{20}. Quindi aggiungi il quadrato di -\frac{1}{20} a entrambi i lati dell'equazione. Con questo passaggio, il lato sinistro dell'equazione diventa un quadrato perfetto.
x^{2}-\frac{1}{10}x+\frac{1}{400}=-\frac{3}{10}+\frac{1}{400}
Eleva -\frac{1}{20} al quadrato elevando al quadrato sia il numeratore che il denominatore della frazione.
x^{2}-\frac{1}{10}x+\frac{1}{400}=-\frac{119}{400}
Aggiungi -\frac{3}{10} a \frac{1}{400} trovando un denominatore comune e sommando i numeratori, quindi riduci la frazione ai minimi termini, se possibile.
\left(x-\frac{1}{20}\right)^{2}=-\frac{119}{400}
Fattore x^{2}-\frac{1}{10}x+\frac{1}{400}. In generale, quando x^{2}+bx+c è un quadrato perfetto, può sempre essere scomplicato come \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{20}\right)^{2}}=\sqrt{-\frac{119}{400}}
Calcola la radice quadrata di entrambi i lati dell'equazione.
x-\frac{1}{20}=\frac{\sqrt{119}i}{20} x-\frac{1}{20}=-\frac{\sqrt{119}i}{20}
Semplifica.
x=\frac{1+\sqrt{119}i}{20} x=\frac{-\sqrt{119}i+1}{20}
Aggiungi \frac{1}{20} a entrambi i lati dell'equazione.
Esempi
Equazione quadratica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equazione lineare
y = 3x + 4
Aritmetica
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equazione simultanea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenziazione
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazione
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}