Salta al contenuto principale
Trova x
Tick mark Image
Grafico

Problemi simili da ricerca Web

Condividi

x\left(-3x-2\right)=0
Scomponi x in fattori.
x=0 x=-\frac{2}{3}
Per trovare soluzioni di equazione, risolvere x=0 e -3x-2=0.
-3x^{2}-2x=0
Tutte le equazioni nel formato ax^{2}+bx+c=0 possono essere risolti usando la formula risolutiva per equazioni di secondo grado: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La formula risolutiva per equazioni di secondo grado fornisce due soluzioni, una quando ± è un'addizione e l'altra quando è una sottrazione.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}}}{2\left(-3\right)}
Questa equazione è nel formato standard: ax^{2}+bx+c=0. Sostituisci -3 a a, -2 a b e 0 a c nella formula risolutiva per equazioni di secondo grado \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±2}{2\left(-3\right)}
Calcola la radice quadrata di \left(-2\right)^{2}.
x=\frac{2±2}{2\left(-3\right)}
L'opposto di -2 è 2.
x=\frac{2±2}{-6}
Moltiplica 2 per -3.
x=\frac{4}{-6}
Ora risolvi l'equazione x=\frac{2±2}{-6} quando ± è più. Aggiungi 2 a 2.
x=-\frac{2}{3}
Riduci la frazione \frac{4}{-6} ai minimi termini estraendo e annullando 2.
x=\frac{0}{-6}
Ora risolvi l'equazione x=\frac{2±2}{-6} quando ± è meno. Sottrai 2 da 2.
x=0
Dividi 0 per -6.
x=-\frac{2}{3} x=0
L'equazione è stata risolta.
-3x^{2}-2x=0
Le equazioni di secondo grado come questa possono essere risolte completando il quadrato. Per completare il quadrato, l'equazione deve essere prima convertita nel formato x^{2}+bx=c.
\frac{-3x^{2}-2x}{-3}=\frac{0}{-3}
Dividi entrambi i lati per -3.
x^{2}+\left(-\frac{2}{-3}\right)x=\frac{0}{-3}
La divisione per -3 annulla la moltiplicazione per -3.
x^{2}+\frac{2}{3}x=\frac{0}{-3}
Dividi -2 per -3.
x^{2}+\frac{2}{3}x=0
Dividi 0 per -3.
x^{2}+\frac{2}{3}x+\left(\frac{1}{3}\right)^{2}=\left(\frac{1}{3}\right)^{2}
Dividi \frac{2}{3}, il coefficiente del termine x, per 2 per ottenere \frac{1}{3}. Quindi aggiungi il quadrato di \frac{1}{3} a entrambi i lati dell'equazione. Con questo passaggio, il lato sinistro dell'equazione diventa un quadrato perfetto.
x^{2}+\frac{2}{3}x+\frac{1}{9}=\frac{1}{9}
Eleva \frac{1}{3} al quadrato elevando al quadrato sia il numeratore che il denominatore della frazione.
\left(x+\frac{1}{3}\right)^{2}=\frac{1}{9}
Fattore x^{2}+\frac{2}{3}x+\frac{1}{9}. In generale, quando x^{2}+bx+c è un quadrato perfetto, può sempre essere scomplicato come \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{3}\right)^{2}}=\sqrt{\frac{1}{9}}
Calcola la radice quadrata di entrambi i lati dell'equazione.
x+\frac{1}{3}=\frac{1}{3} x+\frac{1}{3}=-\frac{1}{3}
Semplifica.
x=0 x=-\frac{2}{3}
Sottrai \frac{1}{3} da entrambi i lati dell'equazione.