Trova x
x=\frac{2}{3}\approx 0,666666667
x=0
Grafico
Condividi
Copiato negli Appunti
x\left(-3x+2\right)=0
Scomponi x in fattori.
x=0 x=\frac{2}{3}
Per trovare soluzioni di equazione, risolvere x=0 e -3x+2=0.
-3x^{2}+2x=0
Tutte le equazioni nel formato ax^{2}+bx+c=0 possono essere risolti usando la formula risolutiva per equazioni di secondo grado: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La formula risolutiva per equazioni di secondo grado fornisce due soluzioni, una quando ± è un'addizione e l'altra quando è una sottrazione.
x=\frac{-2±\sqrt{2^{2}}}{2\left(-3\right)}
Questa equazione è nel formato standard: ax^{2}+bx+c=0. Sostituisci -3 a a, 2 a b e 0 a c nella formula risolutiva per equazioni di secondo grado \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±2}{2\left(-3\right)}
Calcola la radice quadrata di 2^{2}.
x=\frac{-2±2}{-6}
Moltiplica 2 per -3.
x=\frac{0}{-6}
Ora risolvi l'equazione x=\frac{-2±2}{-6} quando ± è più. Aggiungi -2 a 2.
x=0
Dividi 0 per -6.
x=-\frac{4}{-6}
Ora risolvi l'equazione x=\frac{-2±2}{-6} quando ± è meno. Sottrai 2 da -2.
x=\frac{2}{3}
Riduci la frazione \frac{-4}{-6} ai minimi termini estraendo e annullando 2.
x=0 x=\frac{2}{3}
L'equazione è stata risolta.
-3x^{2}+2x=0
Le equazioni di secondo grado come questa possono essere risolte completando il quadrato. Per completare il quadrato, l'equazione deve essere prima convertita nel formato x^{2}+bx=c.
\frac{-3x^{2}+2x}{-3}=\frac{0}{-3}
Dividi entrambi i lati per -3.
x^{2}+\frac{2}{-3}x=\frac{0}{-3}
La divisione per -3 annulla la moltiplicazione per -3.
x^{2}-\frac{2}{3}x=\frac{0}{-3}
Dividi 2 per -3.
x^{2}-\frac{2}{3}x=0
Dividi 0 per -3.
x^{2}-\frac{2}{3}x+\left(-\frac{1}{3}\right)^{2}=\left(-\frac{1}{3}\right)^{2}
Dividi -\frac{2}{3}, il coefficiente del termine x, per 2 per ottenere -\frac{1}{3}. Quindi aggiungi il quadrato di -\frac{1}{3} a entrambi i lati dell'equazione. Con questo passaggio, il lato sinistro dell'equazione diventa un quadrato perfetto.
x^{2}-\frac{2}{3}x+\frac{1}{9}=\frac{1}{9}
Eleva -\frac{1}{3} al quadrato elevando al quadrato sia il numeratore che il denominatore della frazione.
\left(x-\frac{1}{3}\right)^{2}=\frac{1}{9}
Fattore x^{2}-\frac{2}{3}x+\frac{1}{9}. In generale, quando x^{2}+bx+c è un quadrato perfetto, può sempre essere scomplicato come \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{3}\right)^{2}}=\sqrt{\frac{1}{9}}
Calcola la radice quadrata di entrambi i lati dell'equazione.
x-\frac{1}{3}=\frac{1}{3} x-\frac{1}{3}=-\frac{1}{3}
Semplifica.
x=\frac{2}{3} x=0
Aggiungi \frac{1}{3} a entrambi i lati dell'equazione.
Esempi
Equazione quadratica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equazione lineare
y = 3x + 4
Aritmetica
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equazione simultanea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenziazione
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazione
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}