Trova x
x=\frac{16-4y}{5}
Trova y
y=-\frac{5x}{4}+4
Grafico
Condividi
Copiato negli Appunti
y^{2}-10x-8y+32=y^{2}
Aggiungi y^{2} a entrambi i lati. Qualsiasi valore sommato a zero restituisce se stesso.
-10x-8y+32=y^{2}-y^{2}
Sottrai y^{2} da entrambi i lati.
-10x-8y+32=0
Combina y^{2} e -y^{2} per ottenere 0.
-10x+32=8y
Aggiungi 8y a entrambi i lati. Qualsiasi valore sommato a zero restituisce se stesso.
-10x=8y-32
Sottrai 32 da entrambi i lati.
\frac{-10x}{-10}=\frac{8y-32}{-10}
Dividi entrambi i lati per -10.
x=\frac{8y-32}{-10}
La divisione per -10 annulla la moltiplicazione per -10.
x=\frac{16-4y}{5}
Dividi -32+8y per -10.
-10x-8y+32=0
Combina -y^{2} e y^{2} per ottenere 0.
-8y+32=10x
Aggiungi 10x a entrambi i lati. Qualsiasi valore sommato a zero restituisce se stesso.
-8y=10x-32
Sottrai 32 da entrambi i lati.
\frac{-8y}{-8}=\frac{10x-32}{-8}
Dividi entrambi i lati per -8.
y=\frac{10x-32}{-8}
La divisione per -8 annulla la moltiplicazione per -8.
y=-\frac{5x}{4}+4
Dividi 10x-32 per -8.
Esempi
Equazione quadratica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equazione lineare
y = 3x + 4
Aritmetica
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equazione simultanea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenziazione
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazione
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}