Trova x
x=\frac{\sqrt{10}-\sqrt{26}}{2}\approx -0,968370927
x=\frac{\sqrt{26}-\sqrt{10}}{2}\approx 0,968370927
x = \frac{\sqrt{10} + \sqrt{26}}{2} \approx 4,130648587
x=\frac{-\sqrt{10}-\sqrt{26}}{2}\approx -4,130648587
Grafico
Condividi
Copiato negli Appunti
-t^{2}+18t-16=0
Sostituisci t per x^{2}.
t=\frac{-18±\sqrt{18^{2}-4\left(-1\right)\left(-16\right)}}{-2}
Tutte le equazioni del modulo ax^{2}+bx+c=0 possono essere risolte usando la formula quadratica: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Sostituisci -1 con a, 18 con b e -16 con c nella formula quadratica.
t=\frac{-18±2\sqrt{65}}{-2}
Esegui i calcoli.
t=9-\sqrt{65} t=\sqrt{65}+9
Risolvi l'equazione t=\frac{-18±2\sqrt{65}}{-2} quando ± è più e quando ± è meno.
x=-\frac{\sqrt{10}-\sqrt{26}}{2} x=\frac{\sqrt{10}-\sqrt{26}}{2} x=\frac{\sqrt{10}+\sqrt{26}}{2} x=-\frac{\sqrt{10}+\sqrt{26}}{2}
Poiché x=t^{2}, le soluzioni vengono ottenute valutando x=±\sqrt{t} per ogni t.
Esempi
Equazione quadratica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equazione lineare
y = 3x + 4
Aritmetica
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equazione simultanea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenziazione
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazione
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}