Salta al contenuto principale
Scomponi in fattori
Tick mark Image
Calcola
Tick mark Image
Grafico

Problemi simili da ricerca Web

Condividi

-x^{2}+14x-46=0
Il polinomio quadratico può essere scomposto in fattori utilizzando la trasformazione ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), dove x_{1} e x_{2} sono le soluzioni dell'equazione quadratica ax^{2}+bx+c=0.
x=\frac{-14±\sqrt{14^{2}-4\left(-1\right)\left(-46\right)}}{2\left(-1\right)}
Tutte le equazioni nel formato ax^{2}+bx+c=0 possono essere risolti usando la formula risolutiva per equazioni di secondo grado: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La formula risolutiva per equazioni di secondo grado fornisce due soluzioni, una quando ± è un'addizione e l'altra quando è una sottrazione.
x=\frac{-14±\sqrt{196-4\left(-1\right)\left(-46\right)}}{2\left(-1\right)}
Eleva 14 al quadrato.
x=\frac{-14±\sqrt{196+4\left(-46\right)}}{2\left(-1\right)}
Moltiplica -4 per -1.
x=\frac{-14±\sqrt{196-184}}{2\left(-1\right)}
Moltiplica 4 per -46.
x=\frac{-14±\sqrt{12}}{2\left(-1\right)}
Aggiungi 196 a -184.
x=\frac{-14±2\sqrt{3}}{2\left(-1\right)}
Calcola la radice quadrata di 12.
x=\frac{-14±2\sqrt{3}}{-2}
Moltiplica 2 per -1.
x=\frac{2\sqrt{3}-14}{-2}
Ora risolvi l'equazione x=\frac{-14±2\sqrt{3}}{-2} quando ± è più. Aggiungi -14 a 2\sqrt{3}.
x=7-\sqrt{3}
Dividi -14+2\sqrt{3} per -2.
x=\frac{-2\sqrt{3}-14}{-2}
Ora risolvi l'equazione x=\frac{-14±2\sqrt{3}}{-2} quando ± è meno. Sottrai 2\sqrt{3} da -14.
x=\sqrt{3}+7
Dividi -14-2\sqrt{3} per -2.
-x^{2}+14x-46=-\left(x-\left(7-\sqrt{3}\right)\right)\left(x-\left(\sqrt{3}+7\right)\right)
Scomponi in fattori l'espressione originale usando ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Sostituisci x_{1} con 7-\sqrt{3} e x_{2} con 7+\sqrt{3}.