Trova x
x=-8
x=0
Grafico
Condividi
Copiato negli Appunti
-3x^{2}-24x-13+13=0
Aggiungi 13 a entrambi i lati.
-3x^{2}-24x=0
E -13 e 13 per ottenere 0.
x\left(-3x-24\right)=0
Scomponi x in fattori.
x=0 x=-8
Per trovare soluzioni di equazione, risolvere x=0 e -3x-24=0.
-3x^{2}-24x-13=-13
Tutte le equazioni nel formato ax^{2}+bx+c=0 possono essere risolti usando la formula risolutiva per equazioni di secondo grado: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La formula risolutiva per equazioni di secondo grado fornisce due soluzioni, una quando ± è un'addizione e l'altra quando è una sottrazione.
-3x^{2}-24x-13-\left(-13\right)=-13-\left(-13\right)
Aggiungi 13 a entrambi i lati dell'equazione.
-3x^{2}-24x-13-\left(-13\right)=0
Sottraendo -13 da se stesso rimane 0.
-3x^{2}-24x=0
Sottrai -13 da -13.
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}}}{2\left(-3\right)}
Questa equazione è nel formato standard: ax^{2}+bx+c=0. Sostituisci -3 a a, -24 a b e 0 a c nella formula risolutiva per equazioni di secondo grado \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-24\right)±24}{2\left(-3\right)}
Calcola la radice quadrata di \left(-24\right)^{2}.
x=\frac{24±24}{2\left(-3\right)}
L'opposto di -24 è 24.
x=\frac{24±24}{-6}
Moltiplica 2 per -3.
x=\frac{48}{-6}
Ora risolvi l'equazione x=\frac{24±24}{-6} quando ± è più. Aggiungi 24 a 24.
x=-8
Dividi 48 per -6.
x=\frac{0}{-6}
Ora risolvi l'equazione x=\frac{24±24}{-6} quando ± è meno. Sottrai 24 da 24.
x=0
Dividi 0 per -6.
x=-8 x=0
L'equazione è stata risolta.
-3x^{2}-24x-13=-13
Le equazioni di secondo grado come questa possono essere risolte completando il quadrato. Per completare il quadrato, l'equazione deve essere prima convertita nel formato x^{2}+bx=c.
-3x^{2}-24x-13-\left(-13\right)=-13-\left(-13\right)
Aggiungi 13 a entrambi i lati dell'equazione.
-3x^{2}-24x=-13-\left(-13\right)
Sottraendo -13 da se stesso rimane 0.
-3x^{2}-24x=0
Sottrai -13 da -13.
\frac{-3x^{2}-24x}{-3}=\frac{0}{-3}
Dividi entrambi i lati per -3.
x^{2}+\left(-\frac{24}{-3}\right)x=\frac{0}{-3}
La divisione per -3 annulla la moltiplicazione per -3.
x^{2}+8x=\frac{0}{-3}
Dividi -24 per -3.
x^{2}+8x=0
Dividi 0 per -3.
x^{2}+8x+4^{2}=4^{2}
Dividi 8, il coefficiente del termine x, per 2 per ottenere 4. Quindi aggiungi il quadrato di 4 a entrambi i lati dell'equazione. Con questo passaggio, il lato sinistro dell'equazione diventa un quadrato perfetto.
x^{2}+8x+16=16
Eleva 4 al quadrato.
\left(x+4\right)^{2}=16
Fattore x^{2}+8x+16. In generale, quando x^{2}+bx+c è un quadrato perfetto, può sempre essere scomplicato come \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+4\right)^{2}}=\sqrt{16}
Calcola la radice quadrata di entrambi i lati dell'equazione.
x+4=4 x+4=-4
Semplifica.
x=0 x=-8
Sottrai 4 da entrambi i lati dell'equazione.
Esempi
Equazione quadratica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equazione lineare
y = 3x + 4
Aritmetica
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equazione simultanea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenziazione
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazione
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}