Differenzia rispetto a a
-6a
Calcola
-3a^{2}
Condividi
Copiato negli Appunti
-3a^{3}\frac{\mathrm{d}}{\mathrm{d}a}(\frac{1}{a})+\frac{1}{a}\frac{\mathrm{d}}{\mathrm{d}a}(-3a^{3})
Per due funzioni differenziabili qualsiasi, la derivata del prodotto di due funzioni è uguale alla prima funzione moltiplicata per la derivata della seconda più la seconda funzione moltiplicata per la derivata della prima.
-3a^{3}\left(-1\right)a^{-1-1}+\frac{1}{a}\times 3\left(-3\right)a^{3-1}
La derivata di un polinomio è la somma delle derivate dei relativi termini. La derivata di un termine costante è 0. La derivata di ax^{n} è nax^{n-1}.
-3a^{3}\left(-1\right)a^{-2}+\frac{1}{a}\left(-9\right)a^{2}
Semplifica.
-\left(-3\right)a^{3-2}-9a^{-1+2}
Per moltiplicare le potenze della stessa base, somma i relativi esponenti.
3a^{1}-9a^{1}
Semplifica.
3a-9a
Per qualsiasi termine t, t^{1}=t.
\frac{\mathrm{d}}{\mathrm{d}a}(\left(-\frac{3}{1}\right)a^{3-1})
Per dividere potenze della stessa base, sottrai l'esponente del denominatore dall'esponente del numeratore.
\frac{\mathrm{d}}{\mathrm{d}a}(-3a^{2})
Svolgi l'aritmetica.
2\left(-3\right)a^{2-1}
La derivata di un polinomio è la somma delle derivate dei relativi termini. La derivata di un termine costante è 0. La derivata di ax^{n} è nax^{n-1}.
-6a^{1}
Svolgi l'aritmetica.
-6a
Per qualsiasi termine t, t^{1}=t.
-3a^{2}
Cancella a nel numeratore e nel denominatore.
Esempi
Equazione quadratica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equazione lineare
y = 3x + 4
Aritmetica
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equazione simultanea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenziazione
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazione
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}