Scomponi in fattori
\frac{\left(1-x\right)\left(x+3\right)}{2}
Calcola
\frac{\left(1-x\right)\left(x+3\right)}{2}
Grafico
Condividi
Copiato negli Appunti
\frac{-x^{2}-2x+3}{2}
Scomponi \frac{1}{2} in fattori.
a+b=-2 ab=-3=-3
Considera -x^{2}-2x+3. Fattorizza l'espressione raggruppandola. Per prima cosa, è necessario riscrivere l'espressione come -x^{2}+ax+bx+3. Per trovare a e b, configurare un sistema da risolvere.
a=1 b=-3
Poiché ab è negativo, a e b hanno i segni opposti. Poiché a+b è negativo, il numero negativo ha un valore assoluto maggiore del positivo. L'unica coppia di questo tipo è la soluzione di sistema.
\left(-x^{2}+x\right)+\left(-3x+3\right)
Riscrivi -x^{2}-2x+3 come \left(-x^{2}+x\right)+\left(-3x+3\right).
x\left(-x+1\right)+3\left(-x+1\right)
Fattori in x nel primo e 3 nel secondo gruppo.
\left(-x+1\right)\left(x+3\right)
Fattorizza il termine comune -x+1 tramite la proprietà distributiva.
\frac{\left(-x+1\right)\left(x+3\right)}{2}
Riscrivi l'espressione fattorizzata completa.
Esempi
Equazione quadratica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equazione lineare
y = 3x + 4
Aritmetica
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equazione simultanea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenziazione
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazione
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}