Trova x
x=\frac{\sqrt{345}-17}{2}\approx 0,787087811
x=\frac{-\sqrt{345}-17}{2}\approx -17,787087811
Grafico
Condividi
Copiato negli Appunti
-14+xx=-17x
La variabile x non può essere uguale a 0 perché la divisione per zero non è definita. Moltiplica entrambi i lati dell'equazione per x.
-14+x^{2}=-17x
Moltiplica x e x per ottenere x^{2}.
-14+x^{2}+17x=0
Aggiungi 17x a entrambi i lati.
x^{2}+17x-14=0
Tutte le equazioni nel formato ax^{2}+bx+c=0 possono essere risolti usando la formula risolutiva per equazioni di secondo grado: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La formula risolutiva per equazioni di secondo grado fornisce due soluzioni, una quando ± è un'addizione e l'altra quando è una sottrazione.
x=\frac{-17±\sqrt{17^{2}-4\left(-14\right)}}{2}
Questa equazione è nel formato standard: ax^{2}+bx+c=0. Sostituisci 1 a a, 17 a b e -14 a c nella formula risolutiva per equazioni di secondo grado \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-17±\sqrt{289-4\left(-14\right)}}{2}
Eleva 17 al quadrato.
x=\frac{-17±\sqrt{289+56}}{2}
Moltiplica -4 per -14.
x=\frac{-17±\sqrt{345}}{2}
Aggiungi 289 a 56.
x=\frac{\sqrt{345}-17}{2}
Ora risolvi l'equazione x=\frac{-17±\sqrt{345}}{2} quando ± è più. Aggiungi -17 a \sqrt{345}.
x=\frac{-\sqrt{345}-17}{2}
Ora risolvi l'equazione x=\frac{-17±\sqrt{345}}{2} quando ± è meno. Sottrai \sqrt{345} da -17.
x=\frac{\sqrt{345}-17}{2} x=\frac{-\sqrt{345}-17}{2}
L'equazione è stata risolta.
-14+xx=-17x
La variabile x non può essere uguale a 0 perché la divisione per zero non è definita. Moltiplica entrambi i lati dell'equazione per x.
-14+x^{2}=-17x
Moltiplica x e x per ottenere x^{2}.
-14+x^{2}+17x=0
Aggiungi 17x a entrambi i lati.
x^{2}+17x=14
Aggiungi 14 a entrambi i lati. Qualsiasi valore sommato a zero restituisce se stesso.
x^{2}+17x+\left(\frac{17}{2}\right)^{2}=14+\left(\frac{17}{2}\right)^{2}
Dividi 17, il coefficiente del termine x, per 2 per ottenere \frac{17}{2}. Quindi aggiungi il quadrato di \frac{17}{2} a entrambi i lati dell'equazione. Con questo passaggio, il lato sinistro dell'equazione diventa un quadrato perfetto.
x^{2}+17x+\frac{289}{4}=14+\frac{289}{4}
Eleva \frac{17}{2} al quadrato elevando al quadrato sia il numeratore che il denominatore della frazione.
x^{2}+17x+\frac{289}{4}=\frac{345}{4}
Aggiungi 14 a \frac{289}{4}.
\left(x+\frac{17}{2}\right)^{2}=\frac{345}{4}
Fattore x^{2}+17x+\frac{289}{4}. In generale, quando x^{2}+bx+c è un quadrato perfetto, può sempre essere scomplicato come \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{17}{2}\right)^{2}}=\sqrt{\frac{345}{4}}
Calcola la radice quadrata di entrambi i lati dell'equazione.
x+\frac{17}{2}=\frac{\sqrt{345}}{2} x+\frac{17}{2}=-\frac{\sqrt{345}}{2}
Semplifica.
x=\frac{\sqrt{345}-17}{2} x=\frac{-\sqrt{345}-17}{2}
Sottrai \frac{17}{2} da entrambi i lati dell'equazione.
Esempi
Equazione quadratica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equazione lineare
y = 3x + 4
Aritmetica
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equazione simultanea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenziazione
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazione
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}