Trova x
x=8
x=0
Grafico
Condividi
Copiato negli Appunti
x^{2}-8x+16=16
Usare il teorema binomiale \left(a-b\right)^{2}=a^{2}-2ab+b^{2} per espandere \left(x-4\right)^{2}.
x^{2}-8x+16-16=0
Sottrai 16 da entrambi i lati.
x^{2}-8x=0
Sottrai 16 da 16 per ottenere 0.
x\left(x-8\right)=0
Scomponi x in fattori.
x=0 x=8
Per trovare soluzioni di equazione, risolvere x=0 e x-8=0.
x^{2}-8x+16=16
Usare il teorema binomiale \left(a-b\right)^{2}=a^{2}-2ab+b^{2} per espandere \left(x-4\right)^{2}.
x^{2}-8x+16-16=0
Sottrai 16 da entrambi i lati.
x^{2}-8x=0
Sottrai 16 da 16 per ottenere 0.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}}}{2}
Questa equazione è nel formato standard: ax^{2}+bx+c=0. Sostituisci 1 a a, -8 a b e 0 a c nella formula risolutiva per equazioni di secondo grado \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±8}{2}
Calcola la radice quadrata di \left(-8\right)^{2}.
x=\frac{8±8}{2}
L'opposto di -8 è 8.
x=\frac{16}{2}
Ora risolvi l'equazione x=\frac{8±8}{2} quando ± è più. Aggiungi 8 a 8.
x=8
Dividi 16 per 2.
x=\frac{0}{2}
Ora risolvi l'equazione x=\frac{8±8}{2} quando ± è meno. Sottrai 8 da 8.
x=0
Dividi 0 per 2.
x=8 x=0
L'equazione è stata risolta.
\sqrt{\left(x-4\right)^{2}}=\sqrt{16}
Calcola la radice quadrata di entrambi i lati dell'equazione.
x-4=4 x-4=-4
Semplifica.
x=8 x=0
Aggiungi 4 a entrambi i lati dell'equazione.
Esempi
Equazione quadratica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equazione lineare
y = 3x + 4
Aritmetica
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equazione simultanea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenziazione
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazione
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}