Salta al contenuto principale
Calcola
Tick mark Image
Espandi
Tick mark Image

Problemi simili da ricerca Web

Condividi

\left(x-\left(-6-i\right)\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
Moltiplica x-\left(-1+3i\right) e x-\left(-1+3i\right) per ottenere \left(x-\left(-1+3i\right)\right)^{2}.
\left(x+\left(6+i\right)\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
L'opposto di -6-i è 6+i.
\left(x\left(x-\left(-6+i\right)\right)+\left(6+i\right)\left(x-\left(-6+i\right)\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
Usa la proprietà distributiva per moltiplicare x+\left(6+i\right) per x-\left(-6+i\right).
x\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
Usa la proprietà distributiva per moltiplicare x\left(x-\left(-6+i\right)\right)+\left(6+i\right)\left(x-\left(-6+i\right)\right) per \left(x-\left(-1+3i\right)\right)^{2}.
x\left(x+\left(6-i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
Moltiplica -1 e -6+i per ottenere 6-i.
x\left(x+\left(6-i\right)\right)\left(x+\left(1-3i\right)\right)^{2}+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
Moltiplica -1 e -1+3i per ottenere 1-3i.
x\left(x+\left(6-i\right)\right)\left(x^{2}+\left(2-6i\right)x+\left(-8-6i\right)\right)+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
Usare il teorema binomiale \left(a+b\right)^{2}=a^{2}+2ab+b^{2} per espandere \left(x+\left(1-3i\right)\right)^{2}.
\left(x^{2}+\left(6-i\right)x\right)\left(x^{2}+\left(2-6i\right)x+\left(-8-6i\right)\right)+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
Usa la proprietà distributiva per moltiplicare x per x+\left(6-i\right).
x^{4}+\left(2-6i\right)x^{3}+\left(-8-6i\right)x^{2}+\left(6-i\right)x^{3}+\left(6-38i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
Applica la proprietà distributiva moltiplicando ogni termine di x^{2}+\left(6-i\right)x per ogni termine di x^{2}+\left(2-6i\right)x+\left(-8-6i\right).
x^{4}+\left(8-7i\right)x^{3}+\left(-8-6i\right)x^{2}+\left(6-38i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
Combina \left(2-6i\right)x^{3} e \left(6-i\right)x^{3} per ottenere \left(8-7i\right)x^{3}.
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
Combina \left(-8-6i\right)x^{2} e \left(6-38i\right)x^{2} per ottenere \left(-2-44i\right)x^{2}.
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)\left(x+\left(6-i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
Moltiplica -1 e -6+i per ottenere 6-i.
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)\left(x+\left(6-i\right)\right)\left(x+\left(1-3i\right)\right)^{2}
Moltiplica -1 e -1+3i per ottenere 1-3i.
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)\left(x+\left(6-i\right)\right)\left(x^{2}+\left(2-6i\right)x+\left(-8-6i\right)\right)
Usare il teorema binomiale \left(a+b\right)^{2}=a^{2}+2ab+b^{2} per espandere \left(x+\left(1-3i\right)\right)^{2}.
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(\left(6+i\right)x+37\right)\left(x^{2}+\left(2-6i\right)x+\left(-8-6i\right)\right)
Usa la proprietà distributiva per moltiplicare 6+i per x+\left(6-i\right).
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)x^{3}+\left(18-34i\right)x^{2}+\left(-42-44i\right)x+37x^{2}+\left(74-222i\right)x+\left(-296-222i\right)
Applica la proprietà distributiva moltiplicando ogni termine di \left(6+i\right)x+37 per ogni termine di x^{2}+\left(2-6i\right)x+\left(-8-6i\right).
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)x^{3}+\left(55-34i\right)x^{2}+\left(-42-44i\right)x+\left(74-222i\right)x+\left(-296-222i\right)
Combina \left(18-34i\right)x^{2} e 37x^{2} per ottenere \left(55-34i\right)x^{2}.
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)x^{3}+\left(55-34i\right)x^{2}+\left(32-266i\right)x+\left(-296-222i\right)
Combina \left(-42-44i\right)x e \left(74-222i\right)x per ottenere \left(32-266i\right)x.
x^{4}+\left(14-6i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(55-34i\right)x^{2}+\left(32-266i\right)x+\left(-296-222i\right)
Combina \left(8-7i\right)x^{3} e \left(6+i\right)x^{3} per ottenere \left(14-6i\right)x^{3}.
x^{4}+\left(14-6i\right)x^{3}+\left(53-78i\right)x^{2}+\left(-54-28i\right)x+\left(32-266i\right)x+\left(-296-222i\right)
Combina \left(-2-44i\right)x^{2} e \left(55-34i\right)x^{2} per ottenere \left(53-78i\right)x^{2}.
x^{4}+\left(14-6i\right)x^{3}+\left(53-78i\right)x^{2}+\left(-22-294i\right)x+\left(-296-222i\right)
Combina \left(-54-28i\right)x e \left(32-266i\right)x per ottenere \left(-22-294i\right)x.
\left(x-\left(-6-i\right)\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
Moltiplica x-\left(-1+3i\right) e x-\left(-1+3i\right) per ottenere \left(x-\left(-1+3i\right)\right)^{2}.
\left(x+\left(6+i\right)\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
L'opposto di -6-i è 6+i.
\left(x\left(x-\left(-6+i\right)\right)+\left(6+i\right)\left(x-\left(-6+i\right)\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
Usa la proprietà distributiva per moltiplicare x+\left(6+i\right) per x-\left(-6+i\right).
x\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
Usa la proprietà distributiva per moltiplicare x\left(x-\left(-6+i\right)\right)+\left(6+i\right)\left(x-\left(-6+i\right)\right) per \left(x-\left(-1+3i\right)\right)^{2}.
x\left(x+\left(6-i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
Moltiplica -1 e -6+i per ottenere 6-i.
x\left(x+\left(6-i\right)\right)\left(x+\left(1-3i\right)\right)^{2}+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
Moltiplica -1 e -1+3i per ottenere 1-3i.
x\left(x+\left(6-i\right)\right)\left(x^{2}+\left(2-6i\right)x+\left(-8-6i\right)\right)+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
Usare il teorema binomiale \left(a+b\right)^{2}=a^{2}+2ab+b^{2} per espandere \left(x+\left(1-3i\right)\right)^{2}.
\left(x^{2}+\left(6-i\right)x\right)\left(x^{2}+\left(2-6i\right)x+\left(-8-6i\right)\right)+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
Usa la proprietà distributiva per moltiplicare x per x+\left(6-i\right).
x^{4}+\left(2-6i\right)x^{3}+\left(-8-6i\right)x^{2}+\left(6-i\right)x^{3}+\left(6-38i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
Applica la proprietà distributiva moltiplicando ogni termine di x^{2}+\left(6-i\right)x per ogni termine di x^{2}+\left(2-6i\right)x+\left(-8-6i\right).
x^{4}+\left(8-7i\right)x^{3}+\left(-8-6i\right)x^{2}+\left(6-38i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
Combina \left(2-6i\right)x^{3} e \left(6-i\right)x^{3} per ottenere \left(8-7i\right)x^{3}.
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
Combina \left(-8-6i\right)x^{2} e \left(6-38i\right)x^{2} per ottenere \left(-2-44i\right)x^{2}.
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)\left(x+\left(6-i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
Moltiplica -1 e -6+i per ottenere 6-i.
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)\left(x+\left(6-i\right)\right)\left(x+\left(1-3i\right)\right)^{2}
Moltiplica -1 e -1+3i per ottenere 1-3i.
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)\left(x+\left(6-i\right)\right)\left(x^{2}+\left(2-6i\right)x+\left(-8-6i\right)\right)
Usare il teorema binomiale \left(a+b\right)^{2}=a^{2}+2ab+b^{2} per espandere \left(x+\left(1-3i\right)\right)^{2}.
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(\left(6+i\right)x+37\right)\left(x^{2}+\left(2-6i\right)x+\left(-8-6i\right)\right)
Usa la proprietà distributiva per moltiplicare 6+i per x+\left(6-i\right).
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)x^{3}+\left(18-34i\right)x^{2}+\left(-42-44i\right)x+37x^{2}+\left(74-222i\right)x+\left(-296-222i\right)
Applica la proprietà distributiva moltiplicando ogni termine di \left(6+i\right)x+37 per ogni termine di x^{2}+\left(2-6i\right)x+\left(-8-6i\right).
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)x^{3}+\left(55-34i\right)x^{2}+\left(-42-44i\right)x+\left(74-222i\right)x+\left(-296-222i\right)
Combina \left(18-34i\right)x^{2} e 37x^{2} per ottenere \left(55-34i\right)x^{2}.
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)x^{3}+\left(55-34i\right)x^{2}+\left(32-266i\right)x+\left(-296-222i\right)
Combina \left(-42-44i\right)x e \left(74-222i\right)x per ottenere \left(32-266i\right)x.
x^{4}+\left(14-6i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(55-34i\right)x^{2}+\left(32-266i\right)x+\left(-296-222i\right)
Combina \left(8-7i\right)x^{3} e \left(6+i\right)x^{3} per ottenere \left(14-6i\right)x^{3}.
x^{4}+\left(14-6i\right)x^{3}+\left(53-78i\right)x^{2}+\left(-54-28i\right)x+\left(32-266i\right)x+\left(-296-222i\right)
Combina \left(-2-44i\right)x^{2} e \left(55-34i\right)x^{2} per ottenere \left(53-78i\right)x^{2}.
x^{4}+\left(14-6i\right)x^{3}+\left(53-78i\right)x^{2}+\left(-22-294i\right)x+\left(-296-222i\right)
Combina \left(-54-28i\right)x e \left(32-266i\right)x per ottenere \left(-22-294i\right)x.