Salta al contenuto principale
Calcola
Tick mark Image
Differenzia rispetto a x
Tick mark Image
Grafico

Problemi simili da ricerca Web

Condividi

\left(x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{2}+x^{2}-\sqrt{3}x+1\right)\left(x^{2}+\sqrt{3}x+1\right)
Usa la proprietà distributiva per moltiplicare x^{2}+1 per x^{2}-\sqrt{3}x+1.
\left(x^{2}-\sqrt{3}x\right)x^{4}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x^{3}+2x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1
Usa la proprietà distributiva per moltiplicare x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{2}+x^{2}-\sqrt{3}x+1 per x^{2}+\sqrt{3}x+1 e combinare i termini simili.
x^{6}-\sqrt{3}x^{5}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x^{3}+2x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1
Usa la proprietà distributiva per moltiplicare x^{2}-\sqrt{3}x per x^{4}.
x^{6}-\sqrt{3}x^{5}+\left(x^{2}\sqrt{3}-x\left(\sqrt{3}\right)^{2}\right)x^{3}+2x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1
Usa la proprietà distributiva per moltiplicare x^{2}-\sqrt{3}x per \sqrt{3}.
x^{6}-\sqrt{3}x^{5}+\left(x^{2}\sqrt{3}-x\times 3\right)x^{3}+2x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1
Il quadrato di \sqrt{3} è 3.
x^{6}-\sqrt{3}x^{5}+\left(x^{2}\sqrt{3}-3x\right)x^{3}+2x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1
Moltiplica -1 e 3 per ottenere -3.
x^{6}-\sqrt{3}x^{5}+\sqrt{3}x^{5}-3x^{4}+2x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1
Usa la proprietà distributiva per moltiplicare x^{2}\sqrt{3}-3x per x^{3}.
x^{6}-3x^{4}+2x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1
Combina -\sqrt{3}x^{5} e \sqrt{3}x^{5} per ottenere 0.
x^{6}-3x^{4}+2x^{4}-2\sqrt{3}x^{3}+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1
Usa la proprietà distributiva per moltiplicare 2x^{2} per x^{2}-\sqrt{3}x.
x^{6}-x^{4}-2\sqrt{3}x^{3}+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1
Combina -3x^{4} e 2x^{4} per ottenere -x^{4}.
x^{6}-2\sqrt{3}x^{3}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1
Combina -x^{4} e x^{4} per ottenere 0.
x^{6}-\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1
Combina -2\sqrt{3}x^{3} e \sqrt{3}x^{3} per ottenere -\sqrt{3}x^{3}.
x^{6}-\sqrt{3}x^{3}+2x^{2}+\left(x^{2}\sqrt{3}-x\left(\sqrt{3}\right)^{2}\right)x+x^{2}-\sqrt{3}x+\sqrt{3}x+1
Usa la proprietà distributiva per moltiplicare x^{2}-\sqrt{3}x per \sqrt{3}.
x^{6}-\sqrt{3}x^{3}+2x^{2}+\left(x^{2}\sqrt{3}-x\times 3\right)x+x^{2}-\sqrt{3}x+\sqrt{3}x+1
Il quadrato di \sqrt{3} è 3.
x^{6}-\sqrt{3}x^{3}+2x^{2}+\left(x^{2}\sqrt{3}-3x\right)x+x^{2}-\sqrt{3}x+\sqrt{3}x+1
Moltiplica -1 e 3 per ottenere -3.
x^{6}-\sqrt{3}x^{3}+2x^{2}+\sqrt{3}x^{3}-3x^{2}+x^{2}-\sqrt{3}x+\sqrt{3}x+1
Usa la proprietà distributiva per moltiplicare x^{2}\sqrt{3}-3x per x.
x^{6}+2x^{2}-3x^{2}+x^{2}-\sqrt{3}x+\sqrt{3}x+1
Combina -\sqrt{3}x^{3} e \sqrt{3}x^{3} per ottenere 0.
x^{6}-x^{2}+x^{2}-\sqrt{3}x+\sqrt{3}x+1
Combina 2x^{2} e -3x^{2} per ottenere -x^{2}.
x^{6}-\sqrt{3}x+\sqrt{3}x+1
Combina -x^{2} e x^{2} per ottenere 0.
x^{6}+1
Combina -\sqrt{3}x e \sqrt{3}x per ottenere 0.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{2}+x^{2}-\sqrt{3}x+1\right)\left(x^{2}+\sqrt{3}x+1\right))
Usa la proprietà distributiva per moltiplicare x^{2}+1 per x^{2}-\sqrt{3}x+1.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(x^{2}-\sqrt{3}x\right)x^{4}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x^{3}+2x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
Usa la proprietà distributiva per moltiplicare x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{2}+x^{2}-\sqrt{3}x+1 per x^{2}+\sqrt{3}x+1 e combinare i termini simili.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-\sqrt{3}x^{5}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x^{3}+2x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
Usa la proprietà distributiva per moltiplicare x^{2}-\sqrt{3}x per x^{4}.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-\sqrt{3}x^{5}+\left(x^{2}\sqrt{3}-x\left(\sqrt{3}\right)^{2}\right)x^{3}+2x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
Usa la proprietà distributiva per moltiplicare x^{2}-\sqrt{3}x per \sqrt{3}.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-\sqrt{3}x^{5}+\left(x^{2}\sqrt{3}-x\times 3\right)x^{3}+2x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
Il quadrato di \sqrt{3} è 3.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-\sqrt{3}x^{5}+\left(x^{2}\sqrt{3}-3x\right)x^{3}+2x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
Moltiplica -1 e 3 per ottenere -3.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-\sqrt{3}x^{5}+\sqrt{3}x^{5}-3x^{4}+2x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
Usa la proprietà distributiva per moltiplicare x^{2}\sqrt{3}-3x per x^{3}.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-3x^{4}+2x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
Combina -\sqrt{3}x^{5} e \sqrt{3}x^{5} per ottenere 0.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-3x^{4}+2x^{4}-2\sqrt{3}x^{3}+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
Usa la proprietà distributiva per moltiplicare 2x^{2} per x^{2}-\sqrt{3}x.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-x^{4}-2\sqrt{3}x^{3}+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
Combina -3x^{4} e 2x^{4} per ottenere -x^{4}.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-2\sqrt{3}x^{3}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
Combina -x^{4} e x^{4} per ottenere 0.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
Combina -2\sqrt{3}x^{3} e \sqrt{3}x^{3} per ottenere -\sqrt{3}x^{3}.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-\sqrt{3}x^{3}+2x^{2}+\left(x^{2}\sqrt{3}-x\left(\sqrt{3}\right)^{2}\right)x+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
Usa la proprietà distributiva per moltiplicare x^{2}-\sqrt{3}x per \sqrt{3}.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-\sqrt{3}x^{3}+2x^{2}+\left(x^{2}\sqrt{3}-x\times 3\right)x+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
Il quadrato di \sqrt{3} è 3.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-\sqrt{3}x^{3}+2x^{2}+\left(x^{2}\sqrt{3}-3x\right)x+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
Moltiplica -1 e 3 per ottenere -3.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-\sqrt{3}x^{3}+2x^{2}+\sqrt{3}x^{3}-3x^{2}+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
Usa la proprietà distributiva per moltiplicare x^{2}\sqrt{3}-3x per x.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}+2x^{2}-3x^{2}+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
Combina -\sqrt{3}x^{3} e \sqrt{3}x^{3} per ottenere 0.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-x^{2}+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
Combina 2x^{2} e -3x^{2} per ottenere -x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-\sqrt{3}x+\sqrt{3}x+1)
Combina -x^{2} e x^{2} per ottenere 0.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}+1)
Combina -\sqrt{3}x e \sqrt{3}x per ottenere 0.
6x^{6-1}
La derivata di un polinomio è la somma delle derivate dei relativi termini. La derivata di un termine costante è 0. La derivata di ax^{n} è nax^{n-1}.
6x^{5}
Sottrai 1 da 6.