Trova x
x=-5
x=-15
Grafico
Condividi
Copiato negli Appunti
\left(x+10\right)^{2}=25
Moltiplica x+10 e x+10 per ottenere \left(x+10\right)^{2}.
x^{2}+20x+100=25
Usare il teorema binomiale \left(a+b\right)^{2}=a^{2}+2ab+b^{2} per espandere \left(x+10\right)^{2}.
x^{2}+20x+100-25=0
Sottrai 25 da entrambi i lati.
x^{2}+20x+75=0
Sottrai 25 da 100 per ottenere 75.
x=\frac{-20±\sqrt{20^{2}-4\times 75}}{2}
Questa equazione è nel formato standard: ax^{2}+bx+c=0. Sostituisci 1 a a, 20 a b e 75 a c nella formula risolutiva per equazioni di secondo grado \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-20±\sqrt{400-4\times 75}}{2}
Eleva 20 al quadrato.
x=\frac{-20±\sqrt{400-300}}{2}
Moltiplica -4 per 75.
x=\frac{-20±\sqrt{100}}{2}
Aggiungi 400 a -300.
x=\frac{-20±10}{2}
Calcola la radice quadrata di 100.
x=-\frac{10}{2}
Ora risolvi l'equazione x=\frac{-20±10}{2} quando ± è più. Aggiungi -20 a 10.
x=-5
Dividi -10 per 2.
x=-\frac{30}{2}
Ora risolvi l'equazione x=\frac{-20±10}{2} quando ± è meno. Sottrai 10 da -20.
x=-15
Dividi -30 per 2.
x=-5 x=-15
L'equazione è stata risolta.
\left(x+10\right)^{2}=25
Moltiplica x+10 e x+10 per ottenere \left(x+10\right)^{2}.
\sqrt{\left(x+10\right)^{2}}=\sqrt{25}
Calcola la radice quadrata di entrambi i lati dell'equazione.
x+10=5 x+10=-5
Semplifica.
x=-5 x=-15
Sottrai 10 da entrambi i lati dell'equazione.
Esempi
Equazione quadratica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equazione lineare
y = 3x + 4
Aritmetica
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equazione simultanea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenziazione
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazione
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}