Calcola
8\left(a^{4}-b^{4}\right)
Espandi
8a^{4}-8b^{4}
Condividi
Copiato negli Appunti
9\left(a^{2}\right)^{2}-6a^{2}b^{2}+\left(b^{2}\right)^{2}-\left(a^{2}-3b^{2}\right)^{2}
Usare il teorema binomiale \left(p-q\right)^{2}=p^{2}-2pq+q^{2} per espandere \left(3a^{2}-b^{2}\right)^{2}.
9a^{4}-6a^{2}b^{2}+\left(b^{2}\right)^{2}-\left(a^{2}-3b^{2}\right)^{2}
Per elevare una potenza a un'altra potenza, moltiplica gli esponenti. Moltiplica 2 e 2 per ottenere 4.
9a^{4}-6a^{2}b^{2}+b^{4}-\left(a^{2}-3b^{2}\right)^{2}
Per elevare una potenza a un'altra potenza, moltiplica gli esponenti. Moltiplica 2 e 2 per ottenere 4.
9a^{4}-6a^{2}b^{2}+b^{4}-\left(\left(a^{2}\right)^{2}-6a^{2}b^{2}+9\left(b^{2}\right)^{2}\right)
Usare il teorema binomiale \left(p-q\right)^{2}=p^{2}-2pq+q^{2} per espandere \left(a^{2}-3b^{2}\right)^{2}.
9a^{4}-6a^{2}b^{2}+b^{4}-\left(a^{4}-6a^{2}b^{2}+9\left(b^{2}\right)^{2}\right)
Per elevare una potenza a un'altra potenza, moltiplica gli esponenti. Moltiplica 2 e 2 per ottenere 4.
9a^{4}-6a^{2}b^{2}+b^{4}-\left(a^{4}-6a^{2}b^{2}+9b^{4}\right)
Per elevare una potenza a un'altra potenza, moltiplica gli esponenti. Moltiplica 2 e 2 per ottenere 4.
9a^{4}-6a^{2}b^{2}+b^{4}-a^{4}+6a^{2}b^{2}-9b^{4}
Per trovare l'opposto di a^{4}-6a^{2}b^{2}+9b^{4}, trova l'opposto di ogni termine.
8a^{4}-6a^{2}b^{2}+b^{4}+6a^{2}b^{2}-9b^{4}
Combina 9a^{4} e -a^{4} per ottenere 8a^{4}.
8a^{4}+b^{4}-9b^{4}
Combina -6a^{2}b^{2} e 6a^{2}b^{2} per ottenere 0.
8a^{4}-8b^{4}
Combina b^{4} e -9b^{4} per ottenere -8b^{4}.
9\left(a^{2}\right)^{2}-6a^{2}b^{2}+\left(b^{2}\right)^{2}-\left(a^{2}-3b^{2}\right)^{2}
Usare il teorema binomiale \left(p-q\right)^{2}=p^{2}-2pq+q^{2} per espandere \left(3a^{2}-b^{2}\right)^{2}.
9a^{4}-6a^{2}b^{2}+\left(b^{2}\right)^{2}-\left(a^{2}-3b^{2}\right)^{2}
Per elevare una potenza a un'altra potenza, moltiplica gli esponenti. Moltiplica 2 e 2 per ottenere 4.
9a^{4}-6a^{2}b^{2}+b^{4}-\left(a^{2}-3b^{2}\right)^{2}
Per elevare una potenza a un'altra potenza, moltiplica gli esponenti. Moltiplica 2 e 2 per ottenere 4.
9a^{4}-6a^{2}b^{2}+b^{4}-\left(\left(a^{2}\right)^{2}-6a^{2}b^{2}+9\left(b^{2}\right)^{2}\right)
Usare il teorema binomiale \left(p-q\right)^{2}=p^{2}-2pq+q^{2} per espandere \left(a^{2}-3b^{2}\right)^{2}.
9a^{4}-6a^{2}b^{2}+b^{4}-\left(a^{4}-6a^{2}b^{2}+9\left(b^{2}\right)^{2}\right)
Per elevare una potenza a un'altra potenza, moltiplica gli esponenti. Moltiplica 2 e 2 per ottenere 4.
9a^{4}-6a^{2}b^{2}+b^{4}-\left(a^{4}-6a^{2}b^{2}+9b^{4}\right)
Per elevare una potenza a un'altra potenza, moltiplica gli esponenti. Moltiplica 2 e 2 per ottenere 4.
9a^{4}-6a^{2}b^{2}+b^{4}-a^{4}+6a^{2}b^{2}-9b^{4}
Per trovare l'opposto di a^{4}-6a^{2}b^{2}+9b^{4}, trova l'opposto di ogni termine.
8a^{4}-6a^{2}b^{2}+b^{4}+6a^{2}b^{2}-9b^{4}
Combina 9a^{4} e -a^{4} per ottenere 8a^{4}.
8a^{4}+b^{4}-9b^{4}
Combina -6a^{2}b^{2} e 6a^{2}b^{2} per ottenere 0.
8a^{4}-8b^{4}
Combina b^{4} e -9b^{4} per ottenere -8b^{4}.
Esempi
Equazione quadratica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equazione lineare
y = 3x + 4
Aritmetica
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equazione simultanea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenziazione
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazione
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}