Salta al contenuto principale
Trova x
Tick mark Image
Grafico

Problemi simili da ricerca Web

Condividi

x^{2}-4-\left(7x-2x^{2}-6\right)=0
Usa la proprietà distributiva per moltiplicare x-2 per 3-2x e combinare i termini simili.
x^{2}-4-7x+2x^{2}+6=0
Per trovare l'opposto di 7x-2x^{2}-6, trova l'opposto di ogni termine.
3x^{2}-4-7x+6=0
Combina x^{2} e 2x^{2} per ottenere 3x^{2}.
3x^{2}+2-7x=0
E -4 e 6 per ottenere 2.
3x^{2}-7x+2=0
Ridisponi il polinomio per convertirlo nel formato standard. Disponi i termini in ordine dalla potenza massima a quella minima.
a+b=-7 ab=3\times 2=6
Per risolvere l'equazione, fattorizzare il lato sinistro raggruppandolo. Per prima cosa, è necessario riscrivere il lato sinistro come 3x^{2}+ax+bx+2. Per trovare a e b, configurare un sistema da risolvere.
-1,-6 -2,-3
Poiché ab è positivo, a e b hanno lo stesso segno. Poiché a+b è negativo, a e b sono entrambi negativi. Elenca tutte le coppie di numeri interi di questo tipo che danno come prodotto 6.
-1-6=-7 -2-3=-5
Calcola la somma di ogni coppia.
a=-6 b=-1
La soluzione è la coppia che restituisce -7 come somma.
\left(3x^{2}-6x\right)+\left(-x+2\right)
Riscrivi 3x^{2}-7x+2 come \left(3x^{2}-6x\right)+\left(-x+2\right).
3x\left(x-2\right)-\left(x-2\right)
Fattori in 3x nel primo e -1 nel secondo gruppo.
\left(x-2\right)\left(3x-1\right)
Fattorizza il termine comune x-2 tramite la proprietà distributiva.
x=2 x=\frac{1}{3}
Per trovare soluzioni di equazione, risolvere x-2=0 e 3x-1=0.
x^{2}-4-\left(7x-2x^{2}-6\right)=0
Usa la proprietà distributiva per moltiplicare x-2 per 3-2x e combinare i termini simili.
x^{2}-4-7x+2x^{2}+6=0
Per trovare l'opposto di 7x-2x^{2}-6, trova l'opposto di ogni termine.
3x^{2}-4-7x+6=0
Combina x^{2} e 2x^{2} per ottenere 3x^{2}.
3x^{2}+2-7x=0
E -4 e 6 per ottenere 2.
3x^{2}-7x+2=0
Tutte le equazioni nel formato ax^{2}+bx+c=0 possono essere risolti usando la formula risolutiva per equazioni di secondo grado: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La formula risolutiva per equazioni di secondo grado fornisce due soluzioni, una quando ± è un'addizione e l'altra quando è una sottrazione.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 3\times 2}}{2\times 3}
Questa equazione è nel formato standard: ax^{2}+bx+c=0. Sostituisci 3 a a, -7 a b e 2 a c nella formula risolutiva per equazioni di secondo grado \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 3\times 2}}{2\times 3}
Eleva -7 al quadrato.
x=\frac{-\left(-7\right)±\sqrt{49-12\times 2}}{2\times 3}
Moltiplica -4 per 3.
x=\frac{-\left(-7\right)±\sqrt{49-24}}{2\times 3}
Moltiplica -12 per 2.
x=\frac{-\left(-7\right)±\sqrt{25}}{2\times 3}
Aggiungi 49 a -24.
x=\frac{-\left(-7\right)±5}{2\times 3}
Calcola la radice quadrata di 25.
x=\frac{7±5}{2\times 3}
L'opposto di -7 è 7.
x=\frac{7±5}{6}
Moltiplica 2 per 3.
x=\frac{12}{6}
Ora risolvi l'equazione x=\frac{7±5}{6} quando ± è più. Aggiungi 7 a 5.
x=2
Dividi 12 per 6.
x=\frac{2}{6}
Ora risolvi l'equazione x=\frac{7±5}{6} quando ± è meno. Sottrai 5 da 7.
x=\frac{1}{3}
Riduci la frazione \frac{2}{6} ai minimi termini estraendo e annullando 2.
x=2 x=\frac{1}{3}
L'equazione è stata risolta.
x^{2}-4-\left(7x-2x^{2}-6\right)=0
Usa la proprietà distributiva per moltiplicare x-2 per 3-2x e combinare i termini simili.
x^{2}-4-7x+2x^{2}+6=0
Per trovare l'opposto di 7x-2x^{2}-6, trova l'opposto di ogni termine.
3x^{2}-4-7x+6=0
Combina x^{2} e 2x^{2} per ottenere 3x^{2}.
3x^{2}+2-7x=0
E -4 e 6 per ottenere 2.
3x^{2}-7x=-2
Sottrai 2 da entrambi i lati. Qualsiasi valore sottratto da zero restituisce il proprio negativo.
\frac{3x^{2}-7x}{3}=-\frac{2}{3}
Dividi entrambi i lati per 3.
x^{2}-\frac{7}{3}x=-\frac{2}{3}
La divisione per 3 annulla la moltiplicazione per 3.
x^{2}-\frac{7}{3}x+\left(-\frac{7}{6}\right)^{2}=-\frac{2}{3}+\left(-\frac{7}{6}\right)^{2}
Dividi -\frac{7}{3}, il coefficiente del termine x, per 2 per ottenere -\frac{7}{6}. Quindi aggiungi il quadrato di -\frac{7}{6} a entrambi i lati dell'equazione. Con questo passaggio, il lato sinistro dell'equazione diventa un quadrato perfetto.
x^{2}-\frac{7}{3}x+\frac{49}{36}=-\frac{2}{3}+\frac{49}{36}
Eleva -\frac{7}{6} al quadrato elevando al quadrato sia il numeratore che il denominatore della frazione.
x^{2}-\frac{7}{3}x+\frac{49}{36}=\frac{25}{36}
Aggiungi -\frac{2}{3} a \frac{49}{36} trovando un denominatore comune e sommando i numeratori, quindi riduci la frazione ai minimi termini, se possibile.
\left(x-\frac{7}{6}\right)^{2}=\frac{25}{36}
Fattore x^{2}-\frac{7}{3}x+\frac{49}{36}. In generale, quando x^{2}+bx+c è un quadrato perfetto, può sempre essere scomplicato come \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{6}\right)^{2}}=\sqrt{\frac{25}{36}}
Calcola la radice quadrata di entrambi i lati dell'equazione.
x-\frac{7}{6}=\frac{5}{6} x-\frac{7}{6}=-\frac{5}{6}
Semplifica.
x=2 x=\frac{1}{3}
Aggiungi \frac{7}{6} a entrambi i lati dell'equazione.