Salta al contenuto principale
Calcola
Tick mark Image
Espandi
Tick mark Image
Grafico

Problemi simili da ricerca Web

Condividi

\left(\frac{2}{6}+\frac{3x}{6}\right)\left(\frac{1}{9}-\frac{x^{2}}{4}\right)\left(\frac{1}{3}-\frac{x}{2}\right)
Per aggiungere o sottrarre espressioni, espandile per rendere uguali i denominatori. Il minimo comune multiplo di 3 e 2 è 6. Moltiplica \frac{1}{3} per \frac{2}{2}. Moltiplica \frac{x}{2} per \frac{3}{3}.
\frac{2+3x}{6}\left(\frac{1}{9}-\frac{x^{2}}{4}\right)\left(\frac{1}{3}-\frac{x}{2}\right)
Poiché \frac{2}{6} e \frac{3x}{6} hanno lo stesso denominatore, calcolane l'addizione sommando i numeratori.
\frac{2+3x}{6}\left(\frac{4}{36}-\frac{9x^{2}}{36}\right)\left(\frac{1}{3}-\frac{x}{2}\right)
Per aggiungere o sottrarre espressioni, espandile per rendere uguali i denominatori. Il minimo comune multiplo di 9 e 4 è 36. Moltiplica \frac{1}{9} per \frac{4}{4}. Moltiplica \frac{x^{2}}{4} per \frac{9}{9}.
\frac{2+3x}{6}\times \frac{4-9x^{2}}{36}\left(\frac{1}{3}-\frac{x}{2}\right)
Poiché \frac{4}{36} e \frac{9x^{2}}{36} hanno lo stesso denominatore, calcolane la sottrazione sottraendo i numeratori.
\frac{2+3x}{6}\times \frac{4-9x^{2}}{36}\left(\frac{2}{6}-\frac{3x}{6}\right)
Per aggiungere o sottrarre espressioni, espandile per rendere uguali i denominatori. Il minimo comune multiplo di 3 e 2 è 6. Moltiplica \frac{1}{3} per \frac{2}{2}. Moltiplica \frac{x}{2} per \frac{3}{3}.
\frac{2+3x}{6}\times \frac{4-9x^{2}}{36}\times \frac{2-3x}{6}
Poiché \frac{2}{6} e \frac{3x}{6} hanno lo stesso denominatore, calcolane la sottrazione sottraendo i numeratori.
\frac{\left(2+3x\right)\left(4-9x^{2}\right)}{6\times 36}\times \frac{2-3x}{6}
Moltiplica \frac{2+3x}{6} per \frac{4-9x^{2}}{36} moltiplicando il numeratore per il numeratore e il denominatore per il denominatore.
\frac{\left(2+3x\right)\left(4-9x^{2}\right)\left(2-3x\right)}{6\times 36\times 6}
Moltiplica \frac{\left(2+3x\right)\left(4-9x^{2}\right)}{6\times 36} per \frac{2-3x}{6} moltiplicando il numeratore per il numeratore e il denominatore per il denominatore.
\frac{\left(2+3x\right)\left(4-9x^{2}\right)\left(2-3x\right)}{216\times 6}
Moltiplica 6 e 36 per ottenere 216.
\frac{\left(2+3x\right)\left(4-9x^{2}\right)\left(2-3x\right)}{1296}
Moltiplica 216 e 6 per ottenere 1296.
\frac{\left(8-18x^{2}+12x-27x^{3}\right)\left(2-3x\right)}{1296}
Usa la proprietà distributiva per moltiplicare 2+3x per 4-9x^{2}.
\frac{16-72x^{2}+81x^{4}}{1296}
Usa la proprietà distributiva per moltiplicare 8-18x^{2}+12x-27x^{3} per 2-3x e combinare i termini simili.
\left(\frac{2}{6}+\frac{3x}{6}\right)\left(\frac{1}{9}-\frac{x^{2}}{4}\right)\left(\frac{1}{3}-\frac{x}{2}\right)
Per aggiungere o sottrarre espressioni, espandile per rendere uguali i denominatori. Il minimo comune multiplo di 3 e 2 è 6. Moltiplica \frac{1}{3} per \frac{2}{2}. Moltiplica \frac{x}{2} per \frac{3}{3}.
\frac{2+3x}{6}\left(\frac{1}{9}-\frac{x^{2}}{4}\right)\left(\frac{1}{3}-\frac{x}{2}\right)
Poiché \frac{2}{6} e \frac{3x}{6} hanno lo stesso denominatore, calcolane l'addizione sommando i numeratori.
\frac{2+3x}{6}\left(\frac{4}{36}-\frac{9x^{2}}{36}\right)\left(\frac{1}{3}-\frac{x}{2}\right)
Per aggiungere o sottrarre espressioni, espandile per rendere uguali i denominatori. Il minimo comune multiplo di 9 e 4 è 36. Moltiplica \frac{1}{9} per \frac{4}{4}. Moltiplica \frac{x^{2}}{4} per \frac{9}{9}.
\frac{2+3x}{6}\times \frac{4-9x^{2}}{36}\left(\frac{1}{3}-\frac{x}{2}\right)
Poiché \frac{4}{36} e \frac{9x^{2}}{36} hanno lo stesso denominatore, calcolane la sottrazione sottraendo i numeratori.
\frac{2+3x}{6}\times \frac{4-9x^{2}}{36}\left(\frac{2}{6}-\frac{3x}{6}\right)
Per aggiungere o sottrarre espressioni, espandile per rendere uguali i denominatori. Il minimo comune multiplo di 3 e 2 è 6. Moltiplica \frac{1}{3} per \frac{2}{2}. Moltiplica \frac{x}{2} per \frac{3}{3}.
\frac{2+3x}{6}\times \frac{4-9x^{2}}{36}\times \frac{2-3x}{6}
Poiché \frac{2}{6} e \frac{3x}{6} hanno lo stesso denominatore, calcolane la sottrazione sottraendo i numeratori.
\frac{\left(2+3x\right)\left(4-9x^{2}\right)}{6\times 36}\times \frac{2-3x}{6}
Moltiplica \frac{2+3x}{6} per \frac{4-9x^{2}}{36} moltiplicando il numeratore per il numeratore e il denominatore per il denominatore.
\frac{\left(2+3x\right)\left(4-9x^{2}\right)\left(2-3x\right)}{6\times 36\times 6}
Moltiplica \frac{\left(2+3x\right)\left(4-9x^{2}\right)}{6\times 36} per \frac{2-3x}{6} moltiplicando il numeratore per il numeratore e il denominatore per il denominatore.
\frac{\left(2+3x\right)\left(4-9x^{2}\right)\left(2-3x\right)}{216\times 6}
Moltiplica 6 e 36 per ottenere 216.
\frac{\left(2+3x\right)\left(4-9x^{2}\right)\left(2-3x\right)}{1296}
Moltiplica 216 e 6 per ottenere 1296.
\frac{\left(8-18x^{2}+12x-27x^{3}\right)\left(2-3x\right)}{1296}
Usa la proprietà distributiva per moltiplicare 2+3x per 4-9x^{2}.
\frac{16-72x^{2}+81x^{4}}{1296}
Usa la proprietà distributiva per moltiplicare 8-18x^{2}+12x-27x^{3} per 2-3x e combinare i termini simili.