Calcola
x^{2}
Espandi
x^{2}
Grafico
Condividi
Copiato negli Appunti
\frac{1}{4}x^{2}-x+1+\left(\frac{1}{2}x-1\right)\left(\frac{1}{2}x+1\right)+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Usare il teorema binomiale \left(a-b\right)^{2}=a^{2}-2ab+b^{2} per espandere \left(\frac{1}{2}x-1\right)^{2}.
\frac{1}{4}x^{2}-x+1+\left(\frac{1}{2}x\right)^{2}-1+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Considera \left(\frac{1}{2}x-1\right)\left(\frac{1}{2}x+1\right). La moltiplicazione può essere trasformata in differenza di quadrati secondo la regola: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Eleva 1 al quadrato.
\frac{1}{4}x^{2}-x+1+\left(\frac{1}{2}\right)^{2}x^{2}-1+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Espandi \left(\frac{1}{2}x\right)^{2}.
\frac{1}{4}x^{2}-x+1+\frac{1}{4}x^{2}-1+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Calcola \frac{1}{2} alla potenza di 2 e ottieni \frac{1}{4}.
\frac{1}{2}x^{2}-x+1-1+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Combina \frac{1}{4}x^{2} e \frac{1}{4}x^{2} per ottenere \frac{1}{2}x^{2}.
\frac{1}{2}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Sottrai 1 da 1 per ottenere 0.
\frac{1}{2}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x\right)^{2}-1
Considera \left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right). La moltiplicazione può essere trasformata in differenza di quadrati secondo la regola: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Eleva 1 al quadrato.
\frac{1}{2}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}\right)^{2}x^{2}-1
Espandi \left(-\frac{1}{2}x\right)^{2}.
\frac{1}{2}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}+\frac{1}{4}x^{2}-1
Calcola -\frac{1}{2} alla potenza di 2 e ottieni \frac{1}{4}.
\frac{3}{4}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}-1
Combina \frac{1}{2}x^{2} e \frac{1}{4}x^{2} per ottenere \frac{3}{4}x^{2}.
\frac{3}{4}x^{2}-x+\frac{1}{4}x^{2}+x+1-1
Usare il teorema binomiale \left(a+b\right)^{2}=a^{2}+2ab+b^{2} per espandere \left(\frac{1}{2}x+1\right)^{2}.
x^{2}-x+x+1-1
Combina \frac{3}{4}x^{2} e \frac{1}{4}x^{2} per ottenere x^{2}.
x^{2}+1-1
Combina -x e x per ottenere 0.
x^{2}
Sottrai 1 da 1 per ottenere 0.
\frac{1}{4}x^{2}-x+1+\left(\frac{1}{2}x-1\right)\left(\frac{1}{2}x+1\right)+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Usare il teorema binomiale \left(a-b\right)^{2}=a^{2}-2ab+b^{2} per espandere \left(\frac{1}{2}x-1\right)^{2}.
\frac{1}{4}x^{2}-x+1+\left(\frac{1}{2}x\right)^{2}-1+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Considera \left(\frac{1}{2}x-1\right)\left(\frac{1}{2}x+1\right). La moltiplicazione può essere trasformata in differenza di quadrati secondo la regola: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Eleva 1 al quadrato.
\frac{1}{4}x^{2}-x+1+\left(\frac{1}{2}\right)^{2}x^{2}-1+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Espandi \left(\frac{1}{2}x\right)^{2}.
\frac{1}{4}x^{2}-x+1+\frac{1}{4}x^{2}-1+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Calcola \frac{1}{2} alla potenza di 2 e ottieni \frac{1}{4}.
\frac{1}{2}x^{2}-x+1-1+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Combina \frac{1}{4}x^{2} e \frac{1}{4}x^{2} per ottenere \frac{1}{2}x^{2}.
\frac{1}{2}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Sottrai 1 da 1 per ottenere 0.
\frac{1}{2}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x\right)^{2}-1
Considera \left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right). La moltiplicazione può essere trasformata in differenza di quadrati secondo la regola: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Eleva 1 al quadrato.
\frac{1}{2}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}\right)^{2}x^{2}-1
Espandi \left(-\frac{1}{2}x\right)^{2}.
\frac{1}{2}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}+\frac{1}{4}x^{2}-1
Calcola -\frac{1}{2} alla potenza di 2 e ottieni \frac{1}{4}.
\frac{3}{4}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}-1
Combina \frac{1}{2}x^{2} e \frac{1}{4}x^{2} per ottenere \frac{3}{4}x^{2}.
\frac{3}{4}x^{2}-x+\frac{1}{4}x^{2}+x+1-1
Usare il teorema binomiale \left(a+b\right)^{2}=a^{2}+2ab+b^{2} per espandere \left(\frac{1}{2}x+1\right)^{2}.
x^{2}-x+x+1-1
Combina \frac{3}{4}x^{2} e \frac{1}{4}x^{2} per ottenere x^{2}.
x^{2}+1-1
Combina -x e x per ottenere 0.
x^{2}
Sottrai 1 da 1 per ottenere 0.
Esempi
Equazione quadratica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equazione lineare
y = 3x + 4
Aritmetica
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equazione simultanea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenziazione
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazione
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}