Salta al contenuto principale
Trova x (soluzione complessa)
Tick mark Image
Trova x
Tick mark Image
Grafico

Problemi simili da ricerca Web

Condividi

x^{3}-1=0
Sottrai 1 da entrambi i lati.
±1
Con il teorema delle radici razionali tutte le radici razionali di un polinomio sono nel formato \frac{p}{q}, dove p divide il termine costante -1 e q divide il coefficiente principale 1. Elenca tutti i candidati \frac{p}{q}.
x=1
Trova una radice di questo tipo provando tutti i valori interi, partendo dal più piccolo in base al valore assoluto. Se non trovi radici di numeri interi, prova le frazioni.
x^{2}+x+1=0
Per teorema di fattore, x-k è un fattore del polinomio per ogni k di radice. Dividi x^{3}-1 per x-1 per ottenere x^{2}+x+1. Consente di risolvere l'equazione in cui il risultato è uguale a 0.
x=\frac{-1±\sqrt{1^{2}-4\times 1\times 1}}{2}
Tutte le equazioni del modulo ax^{2}+bx+c=0 possono essere risolte usando la formula quadratica: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Sostituisci 1 con a, 1 con b e 1 con c nella formula quadratica.
x=\frac{-1±\sqrt{-3}}{2}
Esegui i calcoli.
x=\frac{-\sqrt{3}i-1}{2} x=\frac{-1+\sqrt{3}i}{2}
Risolvi l'equazione x^{2}+x+1=0 quando ± è più e quando ± è meno.
x=1 x=\frac{-\sqrt{3}i-1}{2} x=\frac{-1+\sqrt{3}i}{2}
Elenca tutte le soluzioni trovate.
x^{3}-1=0
Sottrai 1 da entrambi i lati.
±1
Con il teorema delle radici razionali tutte le radici razionali di un polinomio sono nel formato \frac{p}{q}, dove p divide il termine costante -1 e q divide il coefficiente principale 1. Elenca tutti i candidati \frac{p}{q}.
x=1
Trova una radice di questo tipo provando tutti i valori interi, partendo dal più piccolo in base al valore assoluto. Se non trovi radici di numeri interi, prova le frazioni.
x^{2}+x+1=0
Per teorema di fattore, x-k è un fattore del polinomio per ogni k di radice. Dividi x^{3}-1 per x-1 per ottenere x^{2}+x+1. Consente di risolvere l'equazione in cui il risultato è uguale a 0.
x=\frac{-1±\sqrt{1^{2}-4\times 1\times 1}}{2}
Tutte le equazioni del modulo ax^{2}+bx+c=0 possono essere risolte usando la formula quadratica: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Sostituisci 1 con a, 1 con b e 1 con c nella formula quadratica.
x=\frac{-1±\sqrt{-3}}{2}
Esegui i calcoli.
x\in \emptyset
Poiché la radice quadrata di un numero negativo non è definita nel campo reale, non esistono soluzioni.
x=1
Elenca tutte le soluzioni trovate.