Salta al contenuto principale
Trova x
Tick mark Image
Grafico

Problemi simili da ricerca Web

Condividi

x^{2}+6x=18
Tutte le equazioni nel formato ax^{2}+bx+c=0 possono essere risolti usando la formula risolutiva per equazioni di secondo grado: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La formula risolutiva per equazioni di secondo grado fornisce due soluzioni, una quando ± è un'addizione e l'altra quando è una sottrazione.
x^{2}+6x-18=18-18
Sottrai 18 da entrambi i lati dell'equazione.
x^{2}+6x-18=0
Sottraendo 18 da se stesso rimane 0.
x=\frac{-6±\sqrt{6^{2}-4\left(-18\right)}}{2}
Questa equazione è nel formato standard: ax^{2}+bx+c=0. Sostituisci 1 a a, 6 a b e -18 a c nella formula risolutiva per equazioni di secondo grado \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\left(-18\right)}}{2}
Eleva 6 al quadrato.
x=\frac{-6±\sqrt{36+72}}{2}
Moltiplica -4 per -18.
x=\frac{-6±\sqrt{108}}{2}
Aggiungi 36 a 72.
x=\frac{-6±6\sqrt{3}}{2}
Calcola la radice quadrata di 108.
x=\frac{6\sqrt{3}-6}{2}
Ora risolvi l'equazione x=\frac{-6±6\sqrt{3}}{2} quando ± è più. Aggiungi -6 a 6\sqrt{3}.
x=3\sqrt{3}-3
Dividi -6+6\sqrt{3} per 2.
x=\frac{-6\sqrt{3}-6}{2}
Ora risolvi l'equazione x=\frac{-6±6\sqrt{3}}{2} quando ± è meno. Sottrai 6\sqrt{3} da -6.
x=-3\sqrt{3}-3
Dividi -6-6\sqrt{3} per 2.
x=3\sqrt{3}-3 x=-3\sqrt{3}-3
L'equazione è stata risolta.
x^{2}+6x=18
Le equazioni di secondo grado come questa possono essere risolte completando il quadrato. Per completare il quadrato, l'equazione deve essere prima convertita nel formato x^{2}+bx=c.
x^{2}+6x+3^{2}=18+3^{2}
Dividi 6, il coefficiente del termine x, per 2 per ottenere 3. Quindi aggiungi il quadrato di 3 a entrambi i lati dell'equazione. Con questo passaggio, il lato sinistro dell'equazione diventa un quadrato perfetto.
x^{2}+6x+9=18+9
Eleva 3 al quadrato.
x^{2}+6x+9=27
Aggiungi 18 a 9.
\left(x+3\right)^{2}=27
Fattore x^{2}+6x+9. In generale, quando x^{2}+bx+c è un quadrato perfetto, può sempre essere scomplicato come \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+3\right)^{2}}=\sqrt{27}
Calcola la radice quadrata di entrambi i lati dell'equazione.
x+3=3\sqrt{3} x+3=-3\sqrt{3}
Semplifica.
x=3\sqrt{3}-3 x=-3\sqrt{3}-3
Sottrai 3 da entrambi i lati dell'equazione.