Trova x
x=3
x=-5
Grafico
Condividi
Copiato negli Appunti
x^{2}+2x+1=16
Usare il teorema binomiale \left(a+b\right)^{2}=a^{2}+2ab+b^{2} per espandere \left(x+1\right)^{2}.
x^{2}+2x+1-16=0
Sottrai 16 da entrambi i lati.
x^{2}+2x-15=0
Sottrai 16 da 1 per ottenere -15.
a+b=2 ab=-15
Per risolvere l'equazione, il fattore x^{2}+2x-15 utilizzando la formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Per trovare a e b, configurare un sistema da risolvere.
-1,15 -3,5
Poiché ab è negativo, a e b hanno i segni opposti. Poiché a+b è positivo, il numero positivo ha un valore assoluto maggiore di quello negativo. Elenca tutte le coppie di numeri interi di questo tipo che danno come prodotto -15.
-1+15=14 -3+5=2
Calcola la somma di ogni coppia.
a=-3 b=5
La soluzione è la coppia che restituisce 2 come somma.
\left(x-3\right)\left(x+5\right)
Riscrivi scomposte espressione \left(x+a\right)\left(x+b\right) con i valori ottenuti.
x=3 x=-5
Per trovare soluzioni di equazione, risolvere x-3=0 e x+5=0.
x^{2}+2x+1=16
Usare il teorema binomiale \left(a+b\right)^{2}=a^{2}+2ab+b^{2} per espandere \left(x+1\right)^{2}.
x^{2}+2x+1-16=0
Sottrai 16 da entrambi i lati.
x^{2}+2x-15=0
Sottrai 16 da 1 per ottenere -15.
a+b=2 ab=1\left(-15\right)=-15
Per risolvere l'equazione, fattorizzare il lato sinistro raggruppandolo. Per prima cosa, è necessario riscrivere il lato sinistro come x^{2}+ax+bx-15. Per trovare a e b, configurare un sistema da risolvere.
-1,15 -3,5
Poiché ab è negativo, a e b hanno i segni opposti. Poiché a+b è positivo, il numero positivo ha un valore assoluto maggiore di quello negativo. Elenca tutte le coppie di numeri interi di questo tipo che danno come prodotto -15.
-1+15=14 -3+5=2
Calcola la somma di ogni coppia.
a=-3 b=5
La soluzione è la coppia che restituisce 2 come somma.
\left(x^{2}-3x\right)+\left(5x-15\right)
Riscrivi x^{2}+2x-15 come \left(x^{2}-3x\right)+\left(5x-15\right).
x\left(x-3\right)+5\left(x-3\right)
Fattori in x nel primo e 5 nel secondo gruppo.
\left(x-3\right)\left(x+5\right)
Fattorizza il termine comune x-3 tramite la proprietà distributiva.
x=3 x=-5
Per trovare soluzioni di equazione, risolvere x-3=0 e x+5=0.
x^{2}+2x+1=16
Usare il teorema binomiale \left(a+b\right)^{2}=a^{2}+2ab+b^{2} per espandere \left(x+1\right)^{2}.
x^{2}+2x+1-16=0
Sottrai 16 da entrambi i lati.
x^{2}+2x-15=0
Sottrai 16 da 1 per ottenere -15.
x=\frac{-2±\sqrt{2^{2}-4\left(-15\right)}}{2}
Questa equazione è nel formato standard: ax^{2}+bx+c=0. Sostituisci 1 a a, 2 a b e -15 a c nella formula risolutiva per equazioni di secondo grado \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-15\right)}}{2}
Eleva 2 al quadrato.
x=\frac{-2±\sqrt{4+60}}{2}
Moltiplica -4 per -15.
x=\frac{-2±\sqrt{64}}{2}
Aggiungi 4 a 60.
x=\frac{-2±8}{2}
Calcola la radice quadrata di 64.
x=\frac{6}{2}
Ora risolvi l'equazione x=\frac{-2±8}{2} quando ± è più. Aggiungi -2 a 8.
x=3
Dividi 6 per 2.
x=-\frac{10}{2}
Ora risolvi l'equazione x=\frac{-2±8}{2} quando ± è meno. Sottrai 8 da -2.
x=-5
Dividi -10 per 2.
x=3 x=-5
L'equazione è stata risolta.
\sqrt{\left(x+1\right)^{2}}=\sqrt{16}
Calcola la radice quadrata di entrambi i lati dell'equazione.
x+1=4 x+1=-4
Semplifica.
x=3 x=-5
Sottrai 1 da entrambi i lati dell'equazione.
Esempi
Equazione quadratica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equazione lineare
y = 3x + 4
Aritmetica
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equazione simultanea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenziazione
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazione
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}