Calcola
4
Scomponi in fattori
2^{2}
Condividi
Copiato negli Appunti
\left(1+2\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)\left(1-\sqrt{2}\right)^{2}\left(1+\sqrt{3}\right)^{2}\left(1-\sqrt{3}\right)^{2}
Usare il teorema binomiale \left(a+b\right)^{2}=a^{2}+2ab+b^{2} per espandere \left(1+\sqrt{2}\right)^{2}.
\left(1+2\sqrt{2}+2\right)\left(1-\sqrt{2}\right)^{2}\left(1+\sqrt{3}\right)^{2}\left(1-\sqrt{3}\right)^{2}
Il quadrato di \sqrt{2} è 2.
\left(3+2\sqrt{2}\right)\left(1-\sqrt{2}\right)^{2}\left(1+\sqrt{3}\right)^{2}\left(1-\sqrt{3}\right)^{2}
E 1 e 2 per ottenere 3.
\left(3+2\sqrt{2}\right)\left(1-2\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)\left(1+\sqrt{3}\right)^{2}\left(1-\sqrt{3}\right)^{2}
Usare il teorema binomiale \left(a-b\right)^{2}=a^{2}-2ab+b^{2} per espandere \left(1-\sqrt{2}\right)^{2}.
\left(3+2\sqrt{2}\right)\left(1-2\sqrt{2}+2\right)\left(1+\sqrt{3}\right)^{2}\left(1-\sqrt{3}\right)^{2}
Il quadrato di \sqrt{2} è 2.
\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)\left(1+\sqrt{3}\right)^{2}\left(1-\sqrt{3}\right)^{2}
E 1 e 2 per ottenere 3.
\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)\left(1+2\sqrt{3}+\left(\sqrt{3}\right)^{2}\right)\left(1-\sqrt{3}\right)^{2}
Usare il teorema binomiale \left(a+b\right)^{2}=a^{2}+2ab+b^{2} per espandere \left(1+\sqrt{3}\right)^{2}.
\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)\left(1+2\sqrt{3}+3\right)\left(1-\sqrt{3}\right)^{2}
Il quadrato di \sqrt{3} è 3.
\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)\left(4+2\sqrt{3}\right)\left(1-\sqrt{3}\right)^{2}
E 1 e 3 per ottenere 4.
\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)\left(4+2\sqrt{3}\right)\left(1-2\sqrt{3}+\left(\sqrt{3}\right)^{2}\right)
Usare il teorema binomiale \left(a-b\right)^{2}=a^{2}-2ab+b^{2} per espandere \left(1-\sqrt{3}\right)^{2}.
\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)\left(4+2\sqrt{3}\right)\left(1-2\sqrt{3}+3\right)
Il quadrato di \sqrt{3} è 3.
\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)\left(4+2\sqrt{3}\right)\left(4-2\sqrt{3}\right)
E 1 e 3 per ottenere 4.
\left(9-4\left(\sqrt{2}\right)^{2}\right)\left(4+2\sqrt{3}\right)\left(4-2\sqrt{3}\right)
Usa la proprietà distributiva per moltiplicare 3+2\sqrt{2} per 3-2\sqrt{2} e combinare i termini simili.
\left(9-4\times 2\right)\left(4+2\sqrt{3}\right)\left(4-2\sqrt{3}\right)
Il quadrato di \sqrt{2} è 2.
\left(9-8\right)\left(4+2\sqrt{3}\right)\left(4-2\sqrt{3}\right)
Moltiplica -4 e 2 per ottenere -8.
1\left(4+2\sqrt{3}\right)\left(4-2\sqrt{3}\right)
Sottrai 8 da 9 per ottenere 1.
\left(4+2\sqrt{3}\right)\left(4-2\sqrt{3}\right)
Usa la proprietà distributiva per moltiplicare 1 per 4+2\sqrt{3}.
16-\left(2\sqrt{3}\right)^{2}
La moltiplicazione può essere trasformata in differenza di quadrati secondo la regola: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Eleva 4 al quadrato.
16-2^{2}\left(\sqrt{3}\right)^{2}
Espandi \left(2\sqrt{3}\right)^{2}.
16-4\left(\sqrt{3}\right)^{2}
Calcola 2 alla potenza di 2 e ottieni 4.
16-4\times 3
Il quadrato di \sqrt{3} è 3.
16-12
Moltiplica 4 e 3 per ottenere 12.
4
Sottrai 12 da 16 per ottenere 4.
Esempi
Equazione quadratica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equazione lineare
y = 3x + 4
Aritmetica
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equazione simultanea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenziazione
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazione
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}