Salta al contenuto principale
Differenzia rispetto a β_1
Tick mark Image
Calcola
Tick mark Image

Problemi simili da ricerca Web

Condividi

\left(\sec(-\beta _{1}^{1}+180)\right)^{2}\frac{\mathrm{d}}{\mathrm{d}\beta _{1}}(-\beta _{1}^{1}+180)
Se F è la composizione delle due funzioni differenziabili f\left(u\right) e u=g\left(x\right), ossia, se F\left(x\right)=f\left(g\left(x\right)\right), quindi la derivata di F è uguale alla derivata di f rispetto a u moltiplicata per la derivata di g rispetto a x, ossia, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
\left(\sec(-\beta _{1}^{1}+180)\right)^{2}\left(-1\right)\beta _{1}^{1-1}
La derivata di un polinomio è la somma delle derivate dei relativi termini. La derivata di un termine costante è 0. La derivata di ax^{n} è nax^{n-1}.
-\left(\sec(-\beta _{1}^{1}+180)\right)^{2}
Semplifica.
-\left(\sec(-\beta _{1}+180)\right)^{2}
Per qualsiasi termine t, t^{1}=t.