Calcola
\frac{1}{10000000}=0,0000001
Scomponi in fattori
\frac{1}{2 ^ {7} \cdot 5 ^ {7}} = 1 \times 10^{-7}
Condividi
Copiato negli Appunti
\sqrt{\frac{\frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000}\left(10^{-1236}\times 0\times 0\times 5+10^{-14}\right)}{10^{-72}+0\times 0\times 5}}
Calcola 10 alla potenza di -72 e ottieni \frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000}.
\sqrt{\frac{\frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000}\left(\frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000}\times 0\times 0\times 5+10^{-14}\right)}{10^{-72}+0\times 0\times 5}}
Calcola 10 alla potenza di -1236 e ottieni \frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000}.
\sqrt{\frac{\frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000}\left(0\times 0\times 5+10^{-14}\right)}{10^{-72}+0\times 0\times 5}}
Moltiplica \frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000} e 0 per ottenere 0.
\sqrt{\frac{\frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000}\left(0\times 5+10^{-14}\right)}{10^{-72}+0\times 0\times 5}}
Moltiplica 0 e 0 per ottenere 0.
\sqrt{\frac{\frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000}\left(0+10^{-14}\right)}{10^{-72}+0\times 0\times 5}}
Moltiplica 0 e 5 per ottenere 0.
\sqrt{\frac{\frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000}\left(0+\frac{1}{100000000000000}\right)}{10^{-72}+0\times 0\times 5}}
Calcola 10 alla potenza di -14 e ottieni \frac{1}{100000000000000}.
\sqrt{\frac{\frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000}\times \frac{1}{100000000000000}}{10^{-72}+0\times 0\times 5}}
E 0 e \frac{1}{100000000000000} per ottenere \frac{1}{100000000000000}.
\sqrt{\frac{\frac{1}{100000000000000000000000000000000000000000000000000000000000000000000000000000000000000}}{10^{-72}+0\times 0\times 5}}
Moltiplica \frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000} e \frac{1}{100000000000000} per ottenere \frac{1}{100000000000000000000000000000000000000000000000000000000000000000000000000000000000000}.
\sqrt{\frac{\frac{1}{100000000000000000000000000000000000000000000000000000000000000000000000000000000000000}}{\frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000}+0\times 0\times 5}}
Calcola 10 alla potenza di -72 e ottieni \frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000}.
\sqrt{\frac{\frac{1}{100000000000000000000000000000000000000000000000000000000000000000000000000000000000000}}{\frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000}+0\times 5}}
Moltiplica 0 e 0 per ottenere 0.
\sqrt{\frac{\frac{1}{100000000000000000000000000000000000000000000000000000000000000000000000000000000000000}}{\frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000}+0}}
Moltiplica 0 e 5 per ottenere 0.
\sqrt{\frac{\frac{1}{100000000000000000000000000000000000000000000000000000000000000000000000000000000000000}}{\frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000}}}
E \frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000} e 0 per ottenere \frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000}.
\sqrt{\frac{1}{100000000000000000000000000000000000000000000000000000000000000000000000000000000000000}\times 1000000000000000000000000000000000000000000000000000000000000000000000000}
Dividi \frac{1}{100000000000000000000000000000000000000000000000000000000000000000000000000000000000000} per\frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000} moltiplicando \frac{1}{100000000000000000000000000000000000000000000000000000000000000000000000000000000000000} per il reciproco di \frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000}.
\sqrt{\frac{1}{100000000000000}}
Moltiplica \frac{1}{100000000000000000000000000000000000000000000000000000000000000000000000000000000000000} e 1000000000000000000000000000000000000000000000000000000000000000000000000 per ottenere \frac{1}{100000000000000}.
\frac{1}{10000000}
Riscrivi la radice quadrata del \frac{1}{100000000000000} di divisione come divisione delle radici quadrate \frac{\sqrt{1}}{\sqrt{100000000000000}}. Calcola la radice quadrata di numeratore e denominatore.
Esempi
Equazione quadratica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equazione lineare
y = 3x + 4
Aritmetica
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equazione simultanea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenziazione
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazione
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}