Calcola
-7731
Condividi
Copiato negli Appunti
\int _{0}^{3}-546x-91x^{2}-1188-198x\mathrm{d}x
Applica la proprietà distributiva moltiplicando ogni termine di 91x+198 per ogni termine di -6-x.
\int _{0}^{3}-744x-91x^{2}-1188\mathrm{d}x
Combina -546x e -198x per ottenere -744x.
\int -744x-91x^{2}-1188\mathrm{d}x
Valuta prima l'integrale indefinito.
\int -744x\mathrm{d}x+\int -91x^{2}\mathrm{d}x+\int -1188\mathrm{d}x
Integra la somma termine per termine.
-744\int x\mathrm{d}x-91\int x^{2}\mathrm{d}x+\int -1188\mathrm{d}x
Fattorizza la costante in ogni termine.
-372x^{2}-91\int x^{2}\mathrm{d}x+\int -1188\mathrm{d}x
Poiché \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} per k\neq -1, Sostituisci \int x\mathrm{d}x con \frac{x^{2}}{2}. Moltiplica -744 per \frac{x^{2}}{2}.
-372x^{2}-\frac{91x^{3}}{3}+\int -1188\mathrm{d}x
Poiché \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} per k\neq -1, Sostituisci \int x^{2}\mathrm{d}x con \frac{x^{3}}{3}. Moltiplica -91 per \frac{x^{3}}{3}.
-372x^{2}-\frac{91x^{3}}{3}-1188x
Trova il integrale di -1188 che utilizza la tabella di regole di integrali più comuni \int a\mathrm{d}x=ax.
-372\times 3^{2}-\frac{91}{3}\times 3^{3}-1188\times 3-\left(-372\times 0^{2}-\frac{91}{3}\times 0^{3}-1188\times 0\right)
L'integrale definito corrisponde all'antiderivata di un'espressione calcolata nell'estremo superiore di integrazione meno l'antiderivata calcolata nell'estremo inferiore di integrazione.
-7731
Semplifica.
Esempi
Equazione quadratica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equazione lineare
y = 3x + 4
Aritmetica
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equazione simultanea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenziazione
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazione
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}