Calcola
-225\tan(1557)x+665x+С
Differenzia rispetto a x
5\left(133-45\tan(1557)\right)
Condividi
Copiato negli Appunti
\int 225\tan(0x-1557)+665\mathrm{d}x
Moltiplica 0 e 47 per ottenere 0.
\int 225\tan(0-1557)+665\mathrm{d}x
Qualsiasi valore moltiplicato per zero restituisce zero.
\int 225\tan(-1557)+665\mathrm{d}x
Sottrai 1557 da 0 per ottenere -1557.
\left(\frac{225\sin(-1557)}{\cos(-1557)}+665\right)x
Trova il integrale di \frac{225\sin(-1557)}{\cos(-1557)}+665 che utilizza la tabella di regole di integrali più comuni \int a\mathrm{d}x=ax.
\left(-\frac{225\sin(1557)}{\cos(1557)}+665\right)x
Semplifica.
\left(-\frac{225\sin(1557)}{\cos(1557)}+665\right)x+С
Se F\left(x\right) è un antiderivata di f\left(x\right), il set di tutte le antiderivatives f\left(x\right) viene specificato da F\left(x\right)+C. Pertanto, aggiungere la costante di integrazione C\in \mathrm{R} al risultato.
Esempi
Equazione quadratica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equazione lineare
y = 3x + 4
Aritmetica
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equazione simultanea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenziazione
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazione
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}