Salta al contenuto principale
Calcola
Tick mark Image
Differenzia rispetto a x
Tick mark Image

Problemi simili da ricerca Web

Condividi

\int 20x^{9}-7x^{6}+x^{2}\mathrm{d}x
Usa la proprietà distributiva per moltiplicare x^{2} per 20x^{7}-7x^{4}+1.
\int 20x^{9}\mathrm{d}x+\int -7x^{6}\mathrm{d}x+\int x^{2}\mathrm{d}x
Integra la somma termine per termine.
20\int x^{9}\mathrm{d}x-7\int x^{6}\mathrm{d}x+\int x^{2}\mathrm{d}x
Fattorizza la costante in ogni termine.
2x^{10}-7\int x^{6}\mathrm{d}x+\int x^{2}\mathrm{d}x
Poiché \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} per k\neq -1, Sostituisci \int x^{9}\mathrm{d}x con \frac{x^{10}}{10}. Moltiplica 20 per \frac{x^{10}}{10}.
2x^{10}-x^{7}+\int x^{2}\mathrm{d}x
Poiché \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} per k\neq -1, Sostituisci \int x^{6}\mathrm{d}x con \frac{x^{7}}{7}. Moltiplica -7 per \frac{x^{7}}{7}.
2x^{10}-x^{7}+\frac{x^{3}}{3}
Poiché \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} per k\neq -1, Sostituisci \int x^{2}\mathrm{d}x con \frac{x^{3}}{3}.
2x^{10}-x^{7}+\frac{x^{3}}{3}+С
Se F\left(x\right) è un antiderivata di f\left(x\right), il set di tutte le antiderivatives f\left(x\right) viene specificato da F\left(x\right)+C. Pertanto, aggiungere la costante di integrazione C\in \mathrm{R} al risultato.