Salta al contenuto principale
Calcola
Tick mark Image

Problemi simili da ricerca Web

Condividi

\int 3x^{5}-2x^{3}+x\mathrm{d}x
Valuta prima l'integrale indefinito.
\int 3x^{5}\mathrm{d}x+\int -2x^{3}\mathrm{d}x+\int x\mathrm{d}x
Integra la somma termine per termine.
3\int x^{5}\mathrm{d}x-2\int x^{3}\mathrm{d}x+\int x\mathrm{d}x
Fattorizza la costante in ogni termine.
\frac{x^{6}}{2}-2\int x^{3}\mathrm{d}x+\int x\mathrm{d}x
Poiché \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} per k\neq -1, Sostituisci \int x^{5}\mathrm{d}x con \frac{x^{6}}{6}. Moltiplica 3 per \frac{x^{6}}{6}.
\frac{x^{6}}{2}-\frac{x^{4}}{2}+\int x\mathrm{d}x
Poiché \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} per k\neq -1, Sostituisci \int x^{3}\mathrm{d}x con \frac{x^{4}}{4}. Moltiplica -2 per \frac{x^{4}}{4}.
\frac{x^{6}-x^{4}+x^{2}}{2}
Poiché \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} per k\neq -1, Sostituisci \int x\mathrm{d}x con \frac{x^{2}}{2}.
\frac{4^{6}}{2}-\frac{4^{4}}{2}+\frac{4^{2}}{2}-\left(\frac{2^{6}}{2}-\frac{2^{4}}{2}+\frac{2^{2}}{2}\right)
L'integrale definito corrisponde all'antiderivata di un'espressione calcolata nell'estremo superiore di integrazione meno l'antiderivata calcolata nell'estremo inferiore di integrazione.
1902
Semplifica.