Calcola
16\sqrt{2}-4\approx 18,627416998
Condividi
Copiato negli Appunti
\int 5\sqrt[4]{x}\mathrm{d}x
Valuta prima l'integrale indefinito.
5\int \sqrt[4]{x}\mathrm{d}x
Fattorizza la costante con \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
4x^{\frac{5}{4}}
Riscrivi \sqrt[4]{x} come x^{\frac{1}{4}}. Poiché \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} per k\neq -1, Sostituisci \int x^{\frac{1}{4}}\mathrm{d}x con \frac{x^{\frac{5}{4}}}{\frac{5}{4}}. Semplifica. Moltiplica 5 per \frac{4x^{\frac{5}{4}}}{5}.
4\times 4^{\frac{5}{4}}-4\times 1^{\frac{5}{4}}
L'integrale definito corrisponde all'antiderivata di un'espressione calcolata nell'estremo superiore di integrazione meno l'antiderivata calcolata nell'estremo inferiore di integrazione.
16\sqrt{2}-4
Semplifica.
Esempi
Equazione quadratica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equazione lineare
y = 3x + 4
Aritmetica
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equazione simultanea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenziazione
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazione
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}