Salta al contenuto principale
Calcola
Tick mark Image

Problemi simili da ricerca Web

Condividi

\int _{-2}^{5}64x^{3}-144x^{2}+108x-27\mathrm{d}x
Usare il teorema binomiale \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} per espandere \left(4x-3\right)^{3}.
\int 64x^{3}-144x^{2}+108x-27\mathrm{d}x
Valuta prima l'integrale indefinito.
\int 64x^{3}\mathrm{d}x+\int -144x^{2}\mathrm{d}x+\int 108x\mathrm{d}x+\int -27\mathrm{d}x
Integra la somma termine per termine.
64\int x^{3}\mathrm{d}x-144\int x^{2}\mathrm{d}x+108\int x\mathrm{d}x+\int -27\mathrm{d}x
Fattorizza la costante in ogni termine.
16x^{4}-144\int x^{2}\mathrm{d}x+108\int x\mathrm{d}x+\int -27\mathrm{d}x
Poiché \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} per k\neq -1, Sostituisci \int x^{3}\mathrm{d}x con \frac{x^{4}}{4}. Moltiplica 64 per \frac{x^{4}}{4}.
16x^{4}-48x^{3}+108\int x\mathrm{d}x+\int -27\mathrm{d}x
Poiché \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} per k\neq -1, Sostituisci \int x^{2}\mathrm{d}x con \frac{x^{3}}{3}. Moltiplica -144 per \frac{x^{3}}{3}.
16x^{4}-48x^{3}+54x^{2}+\int -27\mathrm{d}x
Poiché \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} per k\neq -1, Sostituisci \int x\mathrm{d}x con \frac{x^{2}}{2}. Moltiplica 108 per \frac{x^{2}}{2}.
16x^{4}-48x^{3}+54x^{2}-27x
Trova il integrale di -27 che utilizza la tabella di regole di integrali più comuni \int a\mathrm{d}x=ax.
16\times 5^{4}-48\times 5^{3}+54\times 5^{2}-27\times 5-\left(16\left(-2\right)^{4}-48\left(-2\right)^{3}+54\left(-2\right)^{2}-27\left(-2\right)\right)
L'integrale definito corrisponde all'antiderivata di un'espressione calcolata nell'estremo superiore di integrazione meno l'antiderivata calcolata nell'estremo inferiore di integrazione.
4305
Semplifica.