Salta al contenuto principale
Calcola
Tick mark Image
Differenzia rispetto a x
Tick mark Image

Problemi simili da ricerca Web

Condividi

\int 2x^{5}\mathrm{d}x+\int \frac{3}{x}\mathrm{d}x+\int \frac{1}{x^{9}}\mathrm{d}x
Integra la somma termine per termine.
2\int x^{5}\mathrm{d}x+3\int \frac{1}{x}\mathrm{d}x+\int \frac{1}{x^{9}}\mathrm{d}x
Fattorizza la costante in ogni termine.
\frac{x^{6}}{3}+3\int \frac{1}{x}\mathrm{d}x+\int \frac{1}{x^{9}}\mathrm{d}x
Poiché \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} per k\neq -1, Sostituisci \int x^{5}\mathrm{d}x con \frac{x^{6}}{6}. Moltiplica 2 per \frac{x^{6}}{6}.
\frac{x^{6}}{3}+3\ln(|x|)+\int \frac{1}{x^{9}}\mathrm{d}x
Utilizzare \int \frac{1}{x}\mathrm{d}x=\ln(|x|) dalla tabella dei integrali comuni per ottenere il risultato.
\frac{x^{6}}{3}+3\ln(|x|)-\frac{1}{8x^{8}}
Poiché \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} per k\neq -1, Sostituisci \int \frac{1}{x^{9}}\mathrm{d}x con -\frac{1}{8x^{8}}.
\frac{x^{6}}{3}+3\ln(|x|)-\frac{1}{8x^{8}}+С
Se F\left(x\right) è un antiderivata di f\left(x\right), il set di tutte le antiderivatives f\left(x\right) viene specificato da F\left(x\right)+C. Pertanto, aggiungere la costante di integrazione C\in \mathrm{R} al risultato.