Salta al contenuto principale
Calcola
Tick mark Image

Problemi simili da ricerca Web

Condividi

\frac{5\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}
Razionalizza il denominatore di \frac{5}{\sqrt{2}+\sqrt{3}} moltiplicando il numeratore e il denominatore per \sqrt{2}-\sqrt{3}.
\frac{5\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Considera \left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right). La moltiplicazione può essere trasformata in differenza di quadrati secondo la regola: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{5\left(\sqrt{2}-\sqrt{3}\right)}{2-3}
Eleva \sqrt{2} al quadrato. Eleva \sqrt{3} al quadrato.
\frac{5\left(\sqrt{2}-\sqrt{3}\right)}{-1}
Sottrai 3 da 2 per ottenere -1.
-5\left(\sqrt{2}-\sqrt{3}\right)
Qualsiasi numero diviso per -1 avrà come risultato il suo opposto.
-5\sqrt{2}+5\sqrt{3}
Usa la proprietà distributiva per moltiplicare -5 per \sqrt{2}-\sqrt{3}.