\frac{ \left( 5+5+ \left( n-1 \right) d \right) n }{ 2 } =390
Trova d
d=-\frac{10\left(n-78\right)}{n\left(n-1\right)}
n\neq 1\text{ and }n\neq 0
Trova n (soluzione complessa)
\left\{\begin{matrix}n=\frac{\sqrt{d^{2}+3100d+100}+d-10}{2d}\text{; }n=\frac{-\sqrt{d^{2}+3100d+100}+d-10}{2d}\text{, }&d\neq 0\\n=78\text{, }&d=0\end{matrix}\right,
Trova n
\left\{\begin{matrix}n=\frac{\sqrt{d^{2}+3100d+100}+d-10}{2d}\text{; }n=\frac{-\sqrt{d^{2}+3100d+100}+d-10}{2d}\text{, }&d\leq -20\sqrt{6006}-1550\text{ or }\left(d\neq 0\text{ and }d\geq 20\sqrt{6006}-1550\right)\\n=78\text{, }&d=0\end{matrix}\right,
Condividi
Copiato negli Appunti
\left(5+5+\left(n-1\right)d\right)n=390\times 2
Moltiplica entrambi i lati per 2.
\left(10+\left(n-1\right)d\right)n=390\times 2
E 5 e 5 per ottenere 10.
\left(10+nd-d\right)n=390\times 2
Usa la proprietà distributiva per moltiplicare n-1 per d.
10n+dn^{2}-dn=390\times 2
Usa la proprietà distributiva per moltiplicare 10+nd-d per n.
10n+dn^{2}-dn=780
Moltiplica 390 e 2 per ottenere 780.
dn^{2}-dn=780-10n
Sottrai 10n da entrambi i lati.
\left(n^{2}-n\right)d=780-10n
Combina tutti i termini contenenti d.
\frac{\left(n^{2}-n\right)d}{n^{2}-n}=\frac{780-10n}{n^{2}-n}
Dividi entrambi i lati per n^{2}-n.
d=\frac{780-10n}{n^{2}-n}
La divisione per n^{2}-n annulla la moltiplicazione per n^{2}-n.
d=\frac{10\left(78-n\right)}{n\left(n-1\right)}
Dividi 780-10n per n^{2}-n.
Esempi
Equazione quadratica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equazione lineare
y = 3x + 4
Aritmetica
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equazione simultanea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenziazione
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazione
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}