Calcola
\frac{\left(y-2\right)\left(y+4\right)}{y^{2}+3y-175}
Espandi
\frac{y^{2}+2y-8}{y^{2}+3y-175}
Grafico
Condividi
Copiato negli Appunti
\frac{\frac{\left(y-1\right)\left(y+3\right)}{y+3}-\frac{5}{y+3}}{y+5\times \frac{-35}{y+3}}
Per aggiungere o sottrarre espressioni, espandile per rendere uguali i denominatori. Moltiplica y-1 per \frac{y+3}{y+3}.
\frac{\frac{\left(y-1\right)\left(y+3\right)-5}{y+3}}{y+5\times \frac{-35}{y+3}}
Poiché \frac{\left(y-1\right)\left(y+3\right)}{y+3} e \frac{5}{y+3} hanno lo stesso denominatore, calcolane la sottrazione sottraendo i numeratori.
\frac{\frac{y^{2}+3y-y-3-5}{y+3}}{y+5\times \frac{-35}{y+3}}
Esegui le moltiplicazioni in \left(y-1\right)\left(y+3\right)-5.
\frac{\frac{y^{2}+2y-8}{y+3}}{y+5\times \frac{-35}{y+3}}
Unisci i termini come in y^{2}+3y-y-3-5.
\frac{\frac{y^{2}+2y-8}{y+3}}{y+\frac{5\left(-35\right)}{y+3}}
Esprimi 5\times \frac{-35}{y+3} come singola frazione.
\frac{\frac{y^{2}+2y-8}{y+3}}{\frac{y\left(y+3\right)}{y+3}+\frac{5\left(-35\right)}{y+3}}
Per aggiungere o sottrarre espressioni, espandile per rendere uguali i denominatori. Moltiplica y per \frac{y+3}{y+3}.
\frac{\frac{y^{2}+2y-8}{y+3}}{\frac{y\left(y+3\right)+5\left(-35\right)}{y+3}}
Poiché \frac{y\left(y+3\right)}{y+3} e \frac{5\left(-35\right)}{y+3} hanno lo stesso denominatore, calcolane l'addizione sommando i numeratori.
\frac{\frac{y^{2}+2y-8}{y+3}}{\frac{y^{2}+3y-175}{y+3}}
Esegui le moltiplicazioni in y\left(y+3\right)+5\left(-35\right).
\frac{\left(y^{2}+2y-8\right)\left(y+3\right)}{\left(y+3\right)\left(y^{2}+3y-175\right)}
Dividi \frac{y^{2}+2y-8}{y+3} per\frac{y^{2}+3y-175}{y+3} moltiplicando \frac{y^{2}+2y-8}{y+3} per il reciproco di \frac{y^{2}+3y-175}{y+3}.
\frac{y^{2}+2y-8}{y^{2}+3y-175}
Cancella y+3 nel numeratore e nel denominatore.
\frac{\frac{\left(y-1\right)\left(y+3\right)}{y+3}-\frac{5}{y+3}}{y+5\times \frac{-35}{y+3}}
Per aggiungere o sottrarre espressioni, espandile per rendere uguali i denominatori. Moltiplica y-1 per \frac{y+3}{y+3}.
\frac{\frac{\left(y-1\right)\left(y+3\right)-5}{y+3}}{y+5\times \frac{-35}{y+3}}
Poiché \frac{\left(y-1\right)\left(y+3\right)}{y+3} e \frac{5}{y+3} hanno lo stesso denominatore, calcolane la sottrazione sottraendo i numeratori.
\frac{\frac{y^{2}+3y-y-3-5}{y+3}}{y+5\times \frac{-35}{y+3}}
Esegui le moltiplicazioni in \left(y-1\right)\left(y+3\right)-5.
\frac{\frac{y^{2}+2y-8}{y+3}}{y+5\times \frac{-35}{y+3}}
Unisci i termini come in y^{2}+3y-y-3-5.
\frac{\frac{y^{2}+2y-8}{y+3}}{y+\frac{5\left(-35\right)}{y+3}}
Esprimi 5\times \frac{-35}{y+3} come singola frazione.
\frac{\frac{y^{2}+2y-8}{y+3}}{\frac{y\left(y+3\right)}{y+3}+\frac{5\left(-35\right)}{y+3}}
Per aggiungere o sottrarre espressioni, espandile per rendere uguali i denominatori. Moltiplica y per \frac{y+3}{y+3}.
\frac{\frac{y^{2}+2y-8}{y+3}}{\frac{y\left(y+3\right)+5\left(-35\right)}{y+3}}
Poiché \frac{y\left(y+3\right)}{y+3} e \frac{5\left(-35\right)}{y+3} hanno lo stesso denominatore, calcolane l'addizione sommando i numeratori.
\frac{\frac{y^{2}+2y-8}{y+3}}{\frac{y^{2}+3y-175}{y+3}}
Esegui le moltiplicazioni in y\left(y+3\right)+5\left(-35\right).
\frac{\left(y^{2}+2y-8\right)\left(y+3\right)}{\left(y+3\right)\left(y^{2}+3y-175\right)}
Dividi \frac{y^{2}+2y-8}{y+3} per\frac{y^{2}+3y-175}{y+3} moltiplicando \frac{y^{2}+2y-8}{y+3} per il reciproco di \frac{y^{2}+3y-175}{y+3}.
\frac{y^{2}+2y-8}{y^{2}+3y-175}
Cancella y+3 nel numeratore e nel denominatore.
Esempi
Equazione quadratica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equazione lineare
y = 3x + 4
Aritmetica
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equazione simultanea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenziazione
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazione
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}