Trova P
P=\frac{x-1}{x+y}
x\neq -y
Trova x
\left\{\begin{matrix}x=\frac{Py+1}{1-P}\text{, }&y\neq -1\text{ and }P\neq 1\\x\neq 1\text{, }&P=1\text{ and }y=-1\end{matrix}\right,
Grafico
Condividi
Copiato negli Appunti
x-1=1P\left(x+y\right)
Moltiplica entrambi i lati dell'equazione per x+y.
x-1=1Px+1Py
Usa la proprietà distributiva per moltiplicare 1P per x+y.
1Px+1Py=x-1
Scambia i lati in modo che i termini variabili si trovino sul lato sinistro.
Px+Py=x-1
Riordina i termini.
\left(x+y\right)P=x-1
Combina tutti i termini contenenti P.
\frac{\left(x+y\right)P}{x+y}=\frac{x-1}{x+y}
Dividi entrambi i lati per y+x.
P=\frac{x-1}{x+y}
La divisione per y+x annulla la moltiplicazione per y+x.
Esempi
Equazione quadratica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equazione lineare
y = 3x + 4
Aritmetica
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equazione simultanea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenziazione
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazione
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}