Trova a
a=\frac{1-x-x^{3}}{2}
x\neq \sqrt[3]{\frac{\sqrt{93}}{18}+\frac{1}{2}}+\sqrt[3]{-\frac{\sqrt{93}}{18}+\frac{1}{2}}\text{ and }x\neq \frac{18^{\frac{2}{3}}\left(\sqrt[3]{\sqrt{93}+9}+\sqrt[3]{9-\sqrt{93}}\right)}{18}
Trova x
x=\frac{\sqrt[3]{3}\times 2^{\frac{2}{3}}\left(\sqrt[3]{\sqrt{3\left(108a^{2}-108a+31\right)}-18a+9}+\sqrt[3]{-\sqrt{3\left(108a^{2}-108a+31\right)}-18a+9}\right)}{6}
a\neq 0
Grafico
Condividi
Copiato negli Appunti
x^{3}+x-1+2a=0
La variabile a non può essere uguale a 0 perché la divisione per zero non è definita. Moltiplica entrambi i lati dell'equazione per a.
x-1+2a=-x^{3}
Sottrai x^{3} da entrambi i lati. Qualsiasi valore sottratto da zero restituisce il proprio negativo.
-1+2a=-x^{3}-x
Sottrai x da entrambi i lati.
2a=-x^{3}-x+1
Aggiungi 1 a entrambi i lati.
2a=1-x-x^{3}
L'equazione è in formato standard.
\frac{2a}{2}=\frac{1-x-x^{3}}{2}
Dividi entrambi i lati per 2.
a=\frac{1-x-x^{3}}{2}
La divisione per 2 annulla la moltiplicazione per 2.
a=\frac{1-x-x^{3}}{2}\text{, }a\neq 0
La variabile a non può essere uguale a 0.
Esempi
Equazione quadratica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equazione lineare
y = 3x + 4
Aritmetica
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equazione simultanea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenziazione
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazione
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}