Calcola
\frac{x^{2}-7}{x+\sqrt{7}}
Differenzia rispetto a x
1
Grafico
Condividi
Copiato negli Appunti
\frac{\left(x^{2}-7\right)\left(x-\sqrt{7}\right)}{\left(x+\sqrt{7}\right)\left(x-\sqrt{7}\right)}
Razionalizza il denominatore di \frac{x^{2}-7}{x+\sqrt{7}} moltiplicando il numeratore e il denominatore per x-\sqrt{7}.
\frac{\left(x^{2}-7\right)\left(x-\sqrt{7}\right)}{x^{2}-\left(\sqrt{7}\right)^{2}}
Considera \left(x+\sqrt{7}\right)\left(x-\sqrt{7}\right). La moltiplicazione può essere trasformata in differenza di quadrati secondo la regola: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(x^{2}-7\right)\left(x-\sqrt{7}\right)}{x^{2}-7}
Il quadrato di \sqrt{7} è 7.
x-\sqrt{7}
Cancella x^{2}-7 nel numeratore e nel denominatore.
Esempi
Equazione quadratica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equazione lineare
y = 3x + 4
Aritmetica
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equazione simultanea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenziazione
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazione
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}