Salta al contenuto principale
Calcola
Tick mark Image
Differenzia rispetto a x
Tick mark Image

Problemi simili da ricerca Web

Condividi

\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x}{x^{2}}-\frac{3}{x^{2}})
Per aggiungere o sottrarre espressioni, espandile per rendere uguali i denominatori. Il minimo comune multiplo di x e x^{2} è x^{2}. Moltiplica \frac{2}{x} per \frac{x}{x}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x-3}{x^{2}})
Poiché \frac{2x}{x^{2}} e \frac{3}{x^{2}} hanno lo stesso denominatore, calcolane la sottrazione sottraendo i numeratori.
\frac{x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(2x^{1}-3)-\left(2x^{1}-3\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2})}{\left(x^{2}\right)^{2}}
Per due funzioni differenziabili qualsiasi, la derivata del quoziente di due funzioni è il denominatore moltiplicato per la derivata del numeratore meno il numeratore moltiplicato per la derivata del denominatore, il tutto diviso per il denominatore al quadrato.
\frac{x^{2}\times 2x^{1-1}-\left(2x^{1}-3\right)\times 2x^{2-1}}{\left(x^{2}\right)^{2}}
La derivata di un polinomio è la somma delle derivate dei relativi termini. La derivata di un termine costante è 0. La derivata di ax^{n} è nax^{n-1}.
\frac{x^{2}\times 2x^{0}-\left(2x^{1}-3\right)\times 2x^{1}}{\left(x^{2}\right)^{2}}
Svolgi l'aritmetica.
\frac{x^{2}\times 2x^{0}-\left(2x^{1}\times 2x^{1}-3\times 2x^{1}\right)}{\left(x^{2}\right)^{2}}
Espandi tramite proprietà distributiva.
\frac{2x^{2}-\left(2\times 2x^{1+1}-3\times 2x^{1}\right)}{\left(x^{2}\right)^{2}}
Per moltiplicare le potenze della stessa base, somma i relativi esponenti.
\frac{2x^{2}-\left(4x^{2}-6x^{1}\right)}{\left(x^{2}\right)^{2}}
Svolgi l'aritmetica.
\frac{2x^{2}-4x^{2}-\left(-6x^{1}\right)}{\left(x^{2}\right)^{2}}
Rimuovi le parentesi non necessarie.
\frac{\left(2-4\right)x^{2}-\left(-6x^{1}\right)}{\left(x^{2}\right)^{2}}
Combina termini simili.
\frac{-2x^{2}-\left(-6x^{1}\right)}{\left(x^{2}\right)^{2}}
Sottrai 4 da 2.
\frac{2x\left(-x^{1}-\left(-3x^{0}\right)\right)}{\left(x^{2}\right)^{2}}
Scomponi 2x in fattori.
\frac{2x\left(-x^{1}-\left(-3x^{0}\right)\right)}{x^{2\times 2}}
Per elevare una potenza a un'altra potenza, moltiplica gli esponenti.
\frac{2x\left(-x^{1}-\left(-3x^{0}\right)\right)}{x^{4}}
Moltiplica 2 per 2.
\frac{2\left(-x^{1}-\left(-3x^{0}\right)\right)}{x^{4-1}}
Per dividere potenze della stessa base, sottrai l'esponente del numeratore dall'esponente del denominatore.
\frac{2\left(-x^{1}-\left(-3x^{0}\right)\right)}{x^{3}}
Sottrai 1 da 4.
\frac{2\left(-x-\left(-3x^{0}\right)\right)}{x^{3}}
Per qualsiasi termine t, t^{1}=t.
\frac{2\left(-x-\left(-3\right)\right)}{x^{3}}
Per qualsiasi termine t tranne 0, t^{0}=1.