Trova n
n=7
Condividi
Copiato negli Appunti
3\times 4n=2\left(5n+7\right)
La variabile n non può essere uguale a -\frac{7}{5} perché la divisione per zero non è definita. Moltiplica entrambi i lati dell'equazione per 3\left(5n+7\right), il minimo comune multiplo di 5n+7,3.
12n=2\left(5n+7\right)
Moltiplica 3 e 4 per ottenere 12.
12n=10n+14
Usa la proprietà distributiva per moltiplicare 2 per 5n+7.
12n-10n=14
Sottrai 10n da entrambi i lati.
2n=14
Combina 12n e -10n per ottenere 2n.
n=\frac{14}{2}
Dividi entrambi i lati per 2.
n=7
Dividi 14 per 2 per ottenere 7.
Esempi
Equazione quadratica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equazione lineare
y = 3x + 4
Aritmetica
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equazione simultanea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenziazione
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazione
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}