Trova x
x=\frac{9}{17}\approx 0,529411765
Grafico
Condividi
Copiato negli Appunti
6\times 3-3x\times 2=28x
La variabile x non può essere uguale a 0 perché la divisione per zero non è definita. Moltiplica entrambi i lati dell'equazione per 6x, il minimo comune multiplo di x,2,3.
18-3x\times 2=28x
Moltiplica 6 e 3 per ottenere 18.
18-6x=28x
Moltiplica 3 e 2 per ottenere 6.
18-6x-28x=0
Sottrai 28x da entrambi i lati.
-6x-28x=-18
Sottrai 18 da entrambi i lati. Qualsiasi valore sottratto da zero restituisce il proprio negativo.
-34x=-18
Combina -6x e -28x per ottenere -34x.
x=\frac{-18}{-34}
Dividi entrambi i lati per -34.
x=\frac{9}{17}
Riduci la frazione \frac{-18}{-34} ai minimi termini estraendo e annullando -2.
Esempi
Equazione quadratica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equazione lineare
y = 3x + 4
Aritmetica
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equazione simultanea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenziazione
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazione
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}