Trova α
\alpha =\left(-i\right)\ln(\left(\frac{1}{2}-\frac{1}{2}i\right)\times 3^{\frac{1}{2}}+\left(-\frac{1}{2}+\frac{1}{2}i\right))+2\pi n_{1}\text{, }n_{1}\in \mathrm{Z}
\alpha =\left(-i\right)\ln(\left(-\frac{1}{2}-\frac{1}{2}i\right)\times 3^{\frac{1}{2}}+\left(\frac{1}{2}+\frac{1}{2}i\right))+2\pi n_{2}\text{, }n_{2}\in \mathrm{Z}
\alpha =\left(-i\right)\ln(\left(-\frac{1}{2}+\frac{1}{2}i\right)\times 3^{\frac{1}{2}}+\left(\frac{1}{2}-\frac{1}{2}i\right))+2n_{3}\pi \text{, }n_{3}\in \mathrm{Z}
\alpha =\left(-i\right)\ln(\left(\frac{1}{2}+\frac{1}{2}i\right)\times 3^{\frac{1}{2}}+\left(-\frac{1}{2}-\frac{1}{2}i\right))+2\pi n_{4}\text{, }n_{4}\in \mathrm{Z}
\alpha =\left(-i\right)\ln(\left(\frac{1}{2}-\frac{1}{2}i\right)\times 3^{\frac{1}{2}}+\left(\frac{1}{2}-\frac{1}{2}i\right))+2\pi n_{5}\text{, }n_{5}\in \mathrm{Z}
\alpha =\left(-i\right)\ln(\left(-\frac{1}{2}-\frac{1}{2}i\right)\times 3^{\frac{1}{2}}+\left(-\frac{1}{2}-\frac{1}{2}i\right))+2\pi n_{6}\text{, }n_{6}\in \mathrm{Z}
\alpha =\left(-i\right)\ln(\left(\frac{1}{2}+\frac{1}{2}i\right)\times 3^{\frac{1}{2}}+\left(\frac{1}{2}+\frac{1}{2}i\right))+2\pi n_{7}\text{, }n_{7}\in \mathrm{Z}
\alpha =\left(-i\right)\ln(\left(-\frac{1}{2}+\frac{1}{2}i\right)\times 3^{\frac{1}{2}}+\left(-\frac{1}{2}+\frac{1}{2}i\right))+2\pi n_{8}\text{, }n_{8}\in \mathrm{Z}
Condividi
Copiato negli Appunti
Esempi
Equazione quadratica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equazione lineare
y = 3x + 4
Aritmetica
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equazione simultanea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenziazione
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazione
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}