Salta al contenuto principale
Calcola
Tick mark Image
Espandi
Tick mark Image

Problemi simili da ricerca Web

Condividi

\frac{x^{2}y^{2}x-2x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}+\frac{-3x^{4}y^{5}}{\left(-\frac{1}{2}xy\right)^{2}}}{\frac{-3x^{3}y^{3}}{\left(2xy\right)^{2}}+2xy}
Espandi \left(xy\right)^{2}.
\frac{x^{3}y^{2}-2x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}+\frac{-3x^{4}y^{5}}{\left(-\frac{1}{2}xy\right)^{2}}}{\frac{-3x^{3}y^{3}}{\left(2xy\right)^{2}}+2xy}
Per moltiplicare le potenze della stessa base, somma i relativi esponenti. Somma 2 e 1 per ottenere 3.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}+\frac{-3x^{4}y^{5}}{\left(-\frac{1}{2}xy\right)^{2}}}{\frac{-3x^{3}y^{3}}{\left(2xy\right)^{2}}+2xy}
Combina x^{3}y^{2} e -2x^{3}y^{2} per ottenere -x^{3}y^{2}.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}+\frac{-3x^{4}y^{5}}{\left(-\frac{1}{2}\right)^{2}x^{2}y^{2}}}{\frac{-3x^{3}y^{3}}{\left(2xy\right)^{2}}+2xy}
Espandi \left(-\frac{1}{2}xy\right)^{2}.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}+\frac{-3x^{4}y^{5}}{\frac{1}{4}x^{2}y^{2}}}{\frac{-3x^{3}y^{3}}{\left(2xy\right)^{2}}+2xy}
Calcola -\frac{1}{2} alla potenza di 2 e ottieni \frac{1}{4}.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}+\frac{-3x^{2}y^{3}}{\frac{1}{4}}}{\frac{-3x^{3}y^{3}}{\left(2xy\right)^{2}}+2xy}
Cancella x^{2}y^{2} nel numeratore e nel denominatore.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{-3x^{3}y^{3}}{\left(2xy\right)^{2}}+2xy}
Dividi -3x^{2}y^{3} per\frac{1}{4} moltiplicando -3x^{2}y^{3} per il reciproco di \frac{1}{4}.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{-3x^{3}y^{3}}{2^{2}x^{2}y^{2}}+2xy}
Espandi \left(2xy\right)^{2}.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{-3x^{3}y^{3}}{4x^{2}y^{2}}+2xy}
Calcola 2 alla potenza di 2 e ottieni 4.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{-3xy}{4}+2xy}
Cancella x^{2}y^{2} nel numeratore e nel denominatore.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{-3xy}{4}+\frac{4\times 2xy}{4}}
Per aggiungere o sottrarre espressioni, espandile per rendere uguali i denominatori. Moltiplica 2xy per \frac{4}{4}.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{-3xy+4\times 2xy}{4}}
Poiché \frac{-3xy}{4} e \frac{4\times 2xy}{4} hanno lo stesso denominatore, calcolane l'addizione sommando i numeratori.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{-3xy+8xy}{4}}
Esegui le moltiplicazioni in -3xy+4\times 2xy.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{5xy}{4}}
Unisci i termini come in -3xy+8xy.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-12x^{2}y^{3}}{\frac{5xy}{4}}
Moltiplica -3 e 4 per ottenere -12.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{-10x^{2}y^{3}}{\frac{5xy}{4}}
Combina 2x^{2}y^{3} e -12x^{2}y^{3} per ottenere -10x^{2}y^{3}.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{-10x^{2}y^{3}\times 4}{5xy}
Dividi -10x^{2}y^{3} per\frac{5xy}{4} moltiplicando -10x^{2}y^{3} per il reciproco di \frac{5xy}{4}.
\frac{-x^{3}y^{2}}{-x^{2}}-2\times 4xy^{2}
Cancella 5xy nel numeratore e nel denominatore.
\frac{-x^{3}y^{2}}{-x^{2}}-8xy^{2}
Moltiplica -2 e 4 per ottenere -8.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{-8xy^{2}\left(-1\right)x^{2}}{-x^{2}}
Per aggiungere o sottrarre espressioni, espandile per rendere uguali i denominatori. Moltiplica -8xy^{2} per \frac{-x^{2}}{-x^{2}}.
\frac{-x^{3}y^{2}-8xy^{2}\left(-1\right)x^{2}}{-x^{2}}
Poiché \frac{-x^{3}y^{2}}{-x^{2}} e \frac{-8xy^{2}\left(-1\right)x^{2}}{-x^{2}} hanno lo stesso denominatore, calcolane l'addizione sommando i numeratori.
\frac{-x^{3}y^{2}+8x^{3}y^{2}}{-x^{2}}
Esegui le moltiplicazioni in -x^{3}y^{2}-8xy^{2}\left(-1\right)x^{2}.
\frac{7x^{3}y^{2}}{-x^{2}}
Unisci i termini come in -x^{3}y^{2}+8x^{3}y^{2}.
\frac{7xy^{2}}{-1}
Cancella x^{2} nel numeratore e nel denominatore.
\frac{x^{2}y^{2}x-2x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}+\frac{-3x^{4}y^{5}}{\left(-\frac{1}{2}xy\right)^{2}}}{\frac{-3x^{3}y^{3}}{\left(2xy\right)^{2}}+2xy}
Espandi \left(xy\right)^{2}.
\frac{x^{3}y^{2}-2x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}+\frac{-3x^{4}y^{5}}{\left(-\frac{1}{2}xy\right)^{2}}}{\frac{-3x^{3}y^{3}}{\left(2xy\right)^{2}}+2xy}
Per moltiplicare le potenze della stessa base, somma i relativi esponenti. Somma 2 e 1 per ottenere 3.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}+\frac{-3x^{4}y^{5}}{\left(-\frac{1}{2}xy\right)^{2}}}{\frac{-3x^{3}y^{3}}{\left(2xy\right)^{2}}+2xy}
Combina x^{3}y^{2} e -2x^{3}y^{2} per ottenere -x^{3}y^{2}.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}+\frac{-3x^{4}y^{5}}{\left(-\frac{1}{2}\right)^{2}x^{2}y^{2}}}{\frac{-3x^{3}y^{3}}{\left(2xy\right)^{2}}+2xy}
Espandi \left(-\frac{1}{2}xy\right)^{2}.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}+\frac{-3x^{4}y^{5}}{\frac{1}{4}x^{2}y^{2}}}{\frac{-3x^{3}y^{3}}{\left(2xy\right)^{2}}+2xy}
Calcola -\frac{1}{2} alla potenza di 2 e ottieni \frac{1}{4}.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}+\frac{-3x^{2}y^{3}}{\frac{1}{4}}}{\frac{-3x^{3}y^{3}}{\left(2xy\right)^{2}}+2xy}
Cancella x^{2}y^{2} nel numeratore e nel denominatore.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{-3x^{3}y^{3}}{\left(2xy\right)^{2}}+2xy}
Dividi -3x^{2}y^{3} per\frac{1}{4} moltiplicando -3x^{2}y^{3} per il reciproco di \frac{1}{4}.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{-3x^{3}y^{3}}{2^{2}x^{2}y^{2}}+2xy}
Espandi \left(2xy\right)^{2}.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{-3x^{3}y^{3}}{4x^{2}y^{2}}+2xy}
Calcola 2 alla potenza di 2 e ottieni 4.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{-3xy}{4}+2xy}
Cancella x^{2}y^{2} nel numeratore e nel denominatore.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{-3xy}{4}+\frac{4\times 2xy}{4}}
Per aggiungere o sottrarre espressioni, espandile per rendere uguali i denominatori. Moltiplica 2xy per \frac{4}{4}.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{-3xy+4\times 2xy}{4}}
Poiché \frac{-3xy}{4} e \frac{4\times 2xy}{4} hanno lo stesso denominatore, calcolane l'addizione sommando i numeratori.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{-3xy+8xy}{4}}
Esegui le moltiplicazioni in -3xy+4\times 2xy.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{5xy}{4}}
Unisci i termini come in -3xy+8xy.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-12x^{2}y^{3}}{\frac{5xy}{4}}
Moltiplica -3 e 4 per ottenere -12.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{-10x^{2}y^{3}}{\frac{5xy}{4}}
Combina 2x^{2}y^{3} e -12x^{2}y^{3} per ottenere -10x^{2}y^{3}.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{-10x^{2}y^{3}\times 4}{5xy}
Dividi -10x^{2}y^{3} per\frac{5xy}{4} moltiplicando -10x^{2}y^{3} per il reciproco di \frac{5xy}{4}.
\frac{-x^{3}y^{2}}{-x^{2}}-2\times 4xy^{2}
Cancella 5xy nel numeratore e nel denominatore.
\frac{-x^{3}y^{2}}{-x^{2}}-8xy^{2}
Moltiplica -2 e 4 per ottenere -8.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{-8xy^{2}\left(-1\right)x^{2}}{-x^{2}}
Per aggiungere o sottrarre espressioni, espandile per rendere uguali i denominatori. Moltiplica -8xy^{2} per \frac{-x^{2}}{-x^{2}}.
\frac{-x^{3}y^{2}-8xy^{2}\left(-1\right)x^{2}}{-x^{2}}
Poiché \frac{-x^{3}y^{2}}{-x^{2}} e \frac{-8xy^{2}\left(-1\right)x^{2}}{-x^{2}} hanno lo stesso denominatore, calcolane l'addizione sommando i numeratori.
\frac{-x^{3}y^{2}+8x^{3}y^{2}}{-x^{2}}
Esegui le moltiplicazioni in -x^{3}y^{2}-8xy^{2}\left(-1\right)x^{2}.
\frac{7x^{3}y^{2}}{-x^{2}}
Unisci i termini come in -x^{3}y^{2}+8x^{3}y^{2}.
\frac{7xy^{2}}{-1}
Cancella x^{2} nel numeratore e nel denominatore.