Beint í aðalefni
Microsoft
|
Math Solver
Leysa
Æfing
Leika
Efnisatriði
For-Algebra
Meina
Hamur
Stærsti sameiginlegi þátturinn
Minnst Algengar Margfeldi
Röð aðgerða
Broti
Blandað brot
Prime Factorization
Veldisvísir
Róttækur
Algebra
Sameina samsvarandi hugtök
Leysa fyrir breytu
Þáttur
Rýmka
Metið brot
Línulegar jöfnur
Annars stigs jöfnur
Ójöfnuður
Kerfi jöfnur
Fylki
Hornafræði
Einfalda
Meta
Myndrit
Leysa jöfnur
Stærðfræðigreining
Afleiður
Heildir
Takmörk
Algebra inntak
Inntak hornafræði
Stærðfræðigreining Inntak
Fylkisinntak
Leysa
Æfing
Leika
Efnisatriði
For-Algebra
Meina
Hamur
Stærsti sameiginlegi þátturinn
Minnst Algengar Margfeldi
Röð aðgerða
Broti
Blandað brot
Prime Factorization
Veldisvísir
Róttækur
Algebra
Sameina samsvarandi hugtök
Leysa fyrir breytu
Þáttur
Rýmka
Metið brot
Línulegar jöfnur
Annars stigs jöfnur
Ójöfnuður
Kerfi jöfnur
Fylki
Hornafræði
Einfalda
Meta
Myndrit
Leysa jöfnur
Stærðfræðigreining
Afleiður
Heildir
Takmörk
Algebra inntak
Inntak hornafræði
Stærðfræðigreining Inntak
Fylkisinntak
Frum
algebra
hornafræði
Stærðfræðigreining
tölfræði
Fylki
Stafir
Meta
\text{Divergent}
Spurningakeppni
Limits
\lim_{ x \rightarrow 0 } \frac{2}{x}
Svipuð vandamál úr vefleit
Show that Let f : \mathbb{R} \setminus \{0\} \to \mathbb{R} be defined by f(x) = \frac{1}{x}. Show \lim_{x \to 0}\frac{1}{x} doesn't exist.
https://math.stackexchange.com/q/2826102
Suppose that f: U → R is an application defined on a subset U of the set R of reals. If p is a real, not necessarily belonging to U but such that f is "defined in the neighborhood of p", ...
Find \lim_{x\rightarrow0}\frac{x}{[x]}
https://math.stackexchange.com/q/2835948
For x\to 0 the expression \frac{x}{[x]} is not well defined since for 0<x<1 it corresponds to \frac x 0 and thus we can't calculate the limit for that expression. As you noticed, we can only ...
Disprove the limit \lim_{x\to 0}\frac{1}{x}=5 with epsilon-delta
https://math.stackexchange.com/q/1527181
Given \epsilon> 0, we want to find \delta> 0 such that if |x- 0|= |x|< |\delta| then |\frac{1}{x}- 5|< \epsilon. Of course, |\frac{1}{x}- 5|= |\frac{1- 5x}{x}| so, if x is positive, |\frac{1}{x}- 5|<\epsilon ...
Is this a valid use of l'Hospital's Rule? Can it be used recursively?
https://math.stackexchange.com/questions/946785/is-this-a-valid-use-of-lhospitals-rule-can-it-be-used-recursively
L'Hôpital's Rule Assuming that the following conditions are true: f(x) and g(x) must be differentiable \frac{d}{dx}g(x)\neq 0 \lim\limits_{x\to c} \frac{f(x)}{g(x)}= \frac{0}{0}\mbox{ or }\lim\limits_{x\to c} \frac{f(x)}{g(x)}= \frac{\pm\infty}{\pm\infty} ...
How to explain that division by 0 yields infinity to a 2nd grader
https://math.stackexchange.com/questions/242258/how-to-explain-that-division-by-0-yields-infinity-to-a-2nd-grader
The first thing to point out is that division by zero is not defined! You cannot divide by zero. Consider the number 1/x where x is a negative number. You will find that 1/x is negative for all ...
precise definition of a limit at infinity, application for limit at sin(x)
https://math.stackexchange.com/questions/1776133/precise-definition-of-a-limit-at-infinity-application-for-limit-at-sinx
Some items have been dealt with in comments, so we look only at c). We want to show that for any \epsilon\gt 0, there is a B such that if x\gt B then |\sin(1/x)-0|\lt \epsilon. Let \epsilon\gt 0 ...
Meira Vörur
Deila
Afrit
Afritað á klemmuspjald
Svipuð vandamál
\lim_{ x \rightarrow 0 } 5
\lim_{ x \rightarrow 0 } 5x
\lim_{ x \rightarrow 0 } \frac{2}{x}
\lim_{ x \rightarrow 0 } \frac{1}{x^2}
Efst á síðu