Leystu fyrir x
\left\{\begin{matrix}x=-\frac{e^{y}-z-zy^{2}}{y\left(y^{2}+1\right)}\text{, }&y\neq 0\\x\in \mathrm{R}\text{, }&z=1\text{ and }y=0\end{matrix}\right.
Deila
Afritað á klemmuspjald
z\left(y^{2}+1\right)=xy\left(y^{2}+1\right)+e^{y}
Margfaldaðu báðar hliðar jöfnunnar með y^{2}+1.
zy^{2}+z=xy\left(y^{2}+1\right)+e^{y}
Notaðu dreifieiginleika til að margfalda z með y^{2}+1.
zy^{2}+z=xy^{3}+xy+e^{y}
Notaðu dreifieiginleika til að margfalda xy með y^{2}+1.
xy^{3}+xy+e^{y}=zy^{2}+z
Skipta um hliðar svo allir liðir breytunnar séu vinstra megin.
xy^{3}+xy=zy^{2}+z-e^{y}
Dragðu e^{y} frá báðum hliðum.
\left(y^{3}+y\right)x=zy^{2}+z-e^{y}
Sameinaðu alla liði sem innihalda x.
\frac{\left(y^{3}+y\right)x}{y^{3}+y}=\frac{zy^{2}+z-e^{y}}{y^{3}+y}
Deildu báðum hliðum með y^{3}+y.
x=\frac{zy^{2}+z-e^{y}}{y^{3}+y}
Að deila með y^{3}+y afturkallar margföldun með y^{3}+y.
x=\frac{zy^{2}+z-e^{y}}{y\left(y^{2}+1\right)}
Deildu zy^{2}+z-e^{y} með y^{3}+y.
Dæmi
Annars stigs jafna
{ x } ^ { 2 } - 4 x - 5 = 0
Hornafræði
4 \sin \theta \cos \theta = 2 \sin \theta
Línuleg jafna
y = 3x + 4
Reikningslistarinnar
699 * 533
Uppistöðuefni
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtímis jafna
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Aðgreining
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Heildun
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Takmörk
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}