Leystu fyrir x
\left\{\begin{matrix}x=\frac{-\sqrt{-3y^{2}+\frac{4}{z}}-y}{2}\text{, }&z\leq \frac{4}{3y^{2}}\text{ and }z>0\text{ and }\left(y>0\text{ or }z\neq \frac{1}{3y^{2}}\right)\text{ and }y\neq 0\\x=\frac{\sqrt{-3y^{2}+\frac{4}{z}}-y}{2}\text{, }&z\leq \frac{4}{3y^{2}}\text{ and }z>0\text{ and }\left(y<0\text{ or }z\neq \frac{1}{3y^{2}}\right)\text{ and }y\neq 0\end{matrix}\right.
Leystu fyrir y
\left\{\begin{matrix}y=\frac{-\sqrt{-3x^{2}+\frac{4}{z}}-x}{2}\text{, }&z\leq \frac{4}{3x^{2}}\text{ and }z>0\text{ and }\left(x>0\text{ or }z\neq \frac{1}{3x^{2}}\right)\text{ and }x\neq 0\\y=\frac{\sqrt{-3x^{2}+\frac{4}{z}}-x}{2}\text{, }&z\leq \frac{4}{3x^{2}}\text{ and }z>0\text{ and }\left(x<0\text{ or }z\neq \frac{1}{3x^{2}}\right)\text{ and }x\neq 0\end{matrix}\right.
Deila
Afritað á klemmuspjald
Dæmi
Annars stigs jafna
{ x } ^ { 2 } - 4 x - 5 = 0
Hornafræði
4 \sin \theta \cos \theta = 2 \sin \theta
Línuleg jafna
y = 3x + 4
Reikningslistarinnar
699 * 533
Uppistöðuefni
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtímis jafna
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Aðgreining
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Heildun
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Takmörk
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}